Dévelopement d'algorithmes de trajectographie basés sur l'apprentissage machine pour le futur Upstream T

Détail de l'offre

Informations générales

Entité de rattachement

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

• La conscience des responsabilités
• La coopération
• La curiosité
  

Référence

SL-DRF-25-0410  

Direction

DRF

Description du sujet de thèse

Domaine

Physique corpusculaire et cosmos

Sujets de thèse

Dévelopement d'algorithmes de trajectographie basés sur l'apprentissage machine pour le futur Upstream Tracker de LHCb au LHC

Contrat

Thèse

Description de l'offre

Cette proposition vise à développer et améliorer les futures performances de trajectographie de l'expérience LHCb au Grand collisionneur de hadrons (LHC) via l’étude de divers algorithmes basés sur l'apprentissage machine automatique. Parmi les systèmes de trajectographie de LHCb, le sous-détecteur Upstream Tracker (UT) joue un rôle crucial dans la réduction du taux de fausses traces reconstruites dès les premières étapes du processus de reconstruction. Dans l'optique de pouvoir mener à bien les futures études de désintégrations rares de particules, la violation CP dans le Modèle standard, et l'étude du plasma de Quark et Gluon dans les collisions Pb-Pb, une trajectographie précise dans LHCb est obligatoire.

Avec les mises à jour du détecteur prévues d'ici 2035 et l'augmentation anticipée des taux de données, les méthodes de trajectographie traditionnelles risquent de ne pas répondre aux exigences computationnelles, notamment dans les collisions noyau-noyau où des milliers de particules sont produites. Durant la thèse, nous explorerons une gamme de techniques basées sur l'apprentissage machine automatique, comme celles déjà appliquées avec succès dans le Vertex Locator (VELO) de LHCb, pour améliorer la performance de trajectographie de l'UT. En appliquant des méthodes variées, nous visons à améliorer la reconstruction des trajectoires aux premiers stades de la reconstruction, accroître l'efficacité de trajectographie et réduire le taux de fausses traces. Parmi ces techniques, les réseaux de neurones graphiques (Graph Neural Networks, GNN) représentent une option particulièrement prometteuse grâce à l'exploitation des corrélations spatiales et temporelles des hits du détecteur.

Cette exploration de nouvelles méthodes impliquera des développements adaptés au matériel hardware, qu’il s’agisse de GPU, CPU ou FPGA, tous potentiellement présent dans l'architecture de reconstruction du futur LHCb. Nous comparerons les différents algorithmes par rapport aux méthodes de trajectographie actuelles afin de quantifier les améliorations en termes de performance, de scalabilité et d'efficacité computationnelle. De plus, nous prévoyons d’intégrer les algorithmes les plus performants au sein du logiciel de LHCb de de garantir leur compatibilité avec les pipelines de données existants.

Université / école doctorale

PHENIICS (PHENIICS)
Paris-Saclay

Localisation du sujet de thèse

Site

Saclay

Critères candidat

Formation recommandée

M2 ou equivalent en physique nucléaire, physique des particules ou informatique

Demandeur

Disponibilité du poste

01/10/2025

Personne à contacter par le candidat

Audurier Benjamin benjamin.audurier@cern.ch
CEA
DRF/IRFU/DPhN/LQGP
CEA Saclay
Irfu/DPhN
Bât. 703
91191 Gif-sur-Yvette CEDEX

Tuteur / Responsable de thèse

BOBIN Jérôme jbobin@cea.fr
CEA
DRF/IRFU/DEDIP
Orme des merisiers - DPhN
Bâtiment 703
91190 Gif-sur-Yvette
0169084591

En savoir plus


https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=500