Etude des transitions de régime d’écoulement en post-assèchement

Détail de l'offre

Informations générales

Entité de rattachement

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

• La conscience des responsabilités
• La coopération
• La curiosité
  

Référence

SL-DES-25-0171  

Description du sujet de thèse

Domaine

Sciences pour l'ingénieur

Sujets de thèse

Etude des transitions de régime d’écoulement en post-assèchement

Contrat

Thèse

Description de l'offre

Les écoulements diphasiques interviennent dans de nombreux systèmes fluides, notamment pour le refroidissement des réacteurs nucléaires. Selon le flux thermique échangé dans le cœur du réacteur, le débit, la sous-saturation ou la pression, on peut constater des écoulements purement monophasiques, des écoulements à bulles ou annulaires (avec un film liquide au contact de la paroi et un cœur de vapeur).
Lors d’un accident de perte de réfrigérant primaire, le cœur du réacteur qui contient les crayons combustibles s’échauffe jusqu’à la crise d’ébullition lorsque le flux thermique est suffisamment important. Une illustration des régimes d’écoulements diphasiques lors de cet accident est présenté en figure 1. Un film de vapeur se forme rapidement et isole thermiquement les crayons, tandis que du liquide subsiste dans le cœur de l’écoulement. Les crayons du cœur sont asséchés, leur surface n’est refroidie que par de la vapeur et l’échange thermique à la paroi est ainsi dégradé [1]. Cet écoulement est du type 'inverted annular film boiling'. Au fur et à mesure que le liquide se vaporise, le film de vapeur s’épaissit et la turbulence induite aura tendance former des vagues a l’interface liquide-vapeur et à déstabiliser l’interface jusqu’à la formation de poches de liquides (inverted slug film boiling). Puis, l’évaporation et la fragmentation de ces poches vont mener à la formation d’un écoulement dispersé à gouttes (dispersed film boiling).

Actuellement, les transitions de régime d’écoulement dans cette configuration sont très mal identifiées [1], [2] bien que la connaissance de celles-ci soit importante pour l’étude de refroidissement du cœur du réacteur nucléaire. Une des principales difficultés expérimentales réside dans la nécessité de chauffer fortement les parois pour établir un film de vapeur et maintenir celui-ci, rendant de ce fait les sections d’essai opaques. Il est donc particulièrement complexe d’accéder à une visualisation directe et plus encore à des mesures de paramètres locaux comme les champs de températures et vitesses fluides. Les résultats expérimentaux disponibles dans la littérature sur ce sujet sont donc très limités et insuffisants pour développer un modèle physique [1], [3], [4], [5].
Cette thèse, qui constitue une première étape vers l’identification précise des transitions de régime, porte sur l’étude de l’effet purement hydrodynamique, en couplant des approches expérimentale et analytique. Afin d’obtenir une compréhension de la physique des différents phénomènes, la configuration d’un écoulement de liquide au cœur d’un écoulement gazeux est proposée. Dans celle-ci, la déformation de l’interface, la vitesse du gaz et la vitesse du liquide peuvent jouer sur la transition d’un régime à l’autre [6], [7] : l’interface lisse devient perturbée par des vagues (instabilités de Kelvin-Helmholtz), des gouttes sont arrachées de l’interface. Une analyse paramétrique sera effectuée en faisant varier les débits liquides et gazeux et ainsi l’épaisseur du film gazeux pour observer ces différents phénomènes et comprendre les effets de chaque paramètre sur les transitions de régimes. Expérimentalement, un banc a récemment été conçu au DM2S/STMF/LE2H afin d’étudier plus particulièrement ces transitions grâce à une visualisation des déformations de l’interface. Des adaptations pourront être apportées avec de nouvelles mesures ou éventuellement une nouvelle méthodologie si nécessaire.
A partir des résultats expérimentaux, il sera nécessaire d’identifier, voire de définir, les nombres adimensionnels pertinents pour décrire les phénomènes observés. L’analyse portera ensuite sur la caractérisation des transitions de régimes sur la base de ces nombres adimensionnels, afin de proposer une carte des transitions de régimes d’écoulements.
La combinaison des résultats obtenus permettra de renforcer les modèles utilisés dans les codes de calcul comme le code de thermohydraulique CATHARE, développé au CEA en particulier pour les études de sureté des réacteurs nucléaires. Cette thèse présente donc un fort intérêt académique par l’exploitation d’une installation expérimentale innovante et la production de résultats nouveaux qui confirmeront également son intérêt sur le plan industriel pour l’amélioration de la connaissance des phénomènes importants dans la démonstration de sûreté des réacteurs nucléaires.

Références :
[1] M. Ishii et G. De Jarlais, « Flow visualization study of inverted annular flow of post-dryout heat transfer region », Nuclear Engineering and Design, 1987.
[2] G. De jarlais, M. Ishii, et J. Linehan, « Hydrodynamic stability of inverted annular flow in an adiabatic simulation », Argonne National Laboratory, CONF-830702-9, 1983.
[3] T. G. Theofanous, « The boiling crisis in nuclear reactor safety and performance », International Journal of Multiphase Flow, vol. 6, no 1, p. 69-95, févr. 1980, doi: 10.1016/0301-9322(80)90040-3.
[4] N. Takenaka, T. Fujii, et others, « Flow pattern transition and heat transfer of inverted annular flow », Int. J. Multiphase Flow, 1989.
[5] M. A. El Nakla, D. C. Groeneveld, et S. C. Cheng, « Experimental study of inverted annular film boiling in a vertical tube cooled by R-134a », International Journal of Multiphase Flow, vol. 37, p. 37-75, 2011.
[6] Q. Liu, J. Kelly, et X. Sun, « Study on interfacial friction in the inverted annular film boiling regime », Nuclear Engineering and Design, vol. 375, 2021.
[7] K. K. Fung, « Subcooled and low quality film boiling of water in vertical flow at atmospheric pressure », PhD Thesis, Argonne National Laboratory, 1981.

Université / école doctorale


Localisation du sujet de thèse

Site

Saclay

Critères candidat

Formation recommandée

Master en mécanique des fluides (idéalement en thermohydraulique) avec un goût prononcé pour l'expérimental

Demandeur

Disponibilité du poste

01/10/2025

Personne à contacter par le candidat

LABIT Jean-Marc jean-marc.labit@cea.fr
CEA
DES/DM2S/STMF/LMES
CEA Paris-Saclay, 91191 Gif-sur-Yvette Cedex
0169088003

Tuteur / Responsable de thèse

GRADECK Michel michel.gradeck@univ-lorraine.fr
Université de Nancy LEMTA
Laboratoire Energies et Mécanique Théorique et Appliquée
LEMTA
2 avenue de la Forêt de Haye
BP90161
54505 VANDOEUVRE CEDEX
03 72 744 251

En savoir plus


https://cathare.cea.fr/