Scalable thermodynamic computing architectures

Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-25-0635  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Scalable thermodynamic computing architectures

Contract

Thèse

Job description

Large-scale optimisation problems are increasingly prevalent in industries such as finance, materials development, logistics and artificial intelligence. These algorithms are typically realised on hardware solutions comprising clusters of CPUs and GPUs. However, at scale, this can quickly translate into latencies, energies and financial costs that are not sustainable. Thermodynamic computing is a new computing paradigm in which analogue components are coupled together in a physical network. It promises extremely efficient implementations of algorithms such as simulated annealing, stochastic gradient descent and Markov chain Monte Carlo using the intrinsic physics of the system. However, no clear vision of how a realistic programmable and scalable thermodynamic computer exists. It is this ambitious challenge that will be addressed in this PhD topic. Aspects ranging from the development computing macroblocks, their partitioning and interfacing to a digital system to the adaptation and compilation of algorithms to thermodynamic hardware may be considered. Particular emphasis will be put on understanding the trade-offs required to maximise the scalability and programmability of thermodynamic computers on large-scale optimisation benchmarks and their comparison to implementations on conventional digital hardware.

University / doctoral school

Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/09/2025

Person to be contacted by the applicant

DALGATY Thomas thomas.dalgaty@cea.fr
CEA
DRT/DSCIN/DSCIN/LIIM

0438780463

Tutor / Responsible thesis director

HUTIN Louis louis.hutin@cea.fr
CEA
DRT/DCOS//LDMC
CEA
17 rue des martyrs
38054 Grenoble Cedex
04.38.78.04.78

En savoir plus