General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRT-25-0545
Direction
DRT
Thesis topic details
Category
Technological challenges
Thesis topics
Characterization of motor recovery in stroke patients during a BCI-guided rehabilitation
Contract
Thèse
Job description
Brain-computer interfaces (BCIs) make it possible to restore lost functions by allowing individuals to control external devices through the modulation of their brain activity. The CEA has developed a BCI technology based on the WIMAGINE implant, which records brain activity using electrocorticography (ECoG), along with algorithms for decoding motor intentions. This technology was initially tested for controlling robotic effectors such as exoskeletons and spinal cord stimulation devices to compensate for severe motor impairments. While this initial paradigm of substitution and compensation is promising, a different application potential is now emerging: functional recovery through BCI-guided rehabilitation. Current literature suggests that BCIs, when used intensively and in a targeted manner, can promote neural plasticity and, in turn, improve residual motor abilities. In particular, ECoG-based implanted BCIs could offer significant therapeutic outcomes. The objective of this thesis is therefore to assess the potential of CEA's BCI technology to enhance patients' residual motor functions through neural plasticity.
This work will be approached through a rigorous and multidisciplinary scientific methodology, including a comprehensive review of the scientific literature, the setup and execution of experimentations with patients, the algorithmic development of tools for monitoring and analyzing patient progress, and the publication of significant results in high-level scientific journals.
This PhD is intended for a student specializing in biomedical engineering, with expertise in signal processing and the analysis of complex physiological data, as well as experience in Python or Matlab. A strong interest in clinical experimentation and neuroscience will also be required. The student will work within a multidisciplinary team at CLINATEC, contributing to cutting-edge research in the field of BCIs.
University / doctoral school
Chimie et Sciences du Vivant (EDCSV)
Université Grenoble Alpes
Thesis topic location
Site
Grenoble
Requester
Position start date
01/10/2025
Person to be contacted by the applicant
STRUBER Lucas
lucas.struber@cea.fr
CEA
DRT/DTIS//LCDDM
CEA Grenoble
17 Avenue des Martyrs
0438789436
Tutor / Responsible thesis director
DETANTE Olivier
ODetante@chu-grenoble.fr
CHUGA / UGA
Neurologie / GIN
CS10217, 38043 Grenoble
04 76 76 57 89
En savoir plus