Impact forces under flow : water gap effect on the dynamics of a nuclear component

Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-25-0010  

Thesis topic details

Category

Engineering science

Thesis topics

Impact forces under flow : water gap effect on the dynamics of a nuclear component

Contract

Thèse

Job description

In the framework of the contribution of nuclear power to a decarbonized energy mix, reactors safety is of paramount importance. In the event of an earthquake, dynamic loads experienced by a reactor core could lead to collisions between fuel assemblies. The presence of turbulent flow inside the core has a significant effect on the dynamic behaviour of the assemblies. Recent tests have revealed an additional effect of the flow on impact forces between structures, possibly caused by a high-speed fluid sheet phenomenon.

The objective of this thesis, divided into three parts, is to understand and characterise this high-speed fluid sheet phenomenon in the specific case of a fuel assembly geometry.
A first part will be dedicated to CFD simulations taking into account the deformation of the fluid domain mesh using the Arbitrary Lagrange-Euler (ALE) method [1]. In addition, ambitious experimental campaigns will allow measuring, as close as possible to the impact, the effect of structures displacement on flow velocity field (using optical methods such as Particle Image Velocimetry [2]) and the resulting impact forces. The findings will be translated into an analytical modelling of the phenomenon.

The candidate will be hosted by the laboratory leading work on fluid-structure interactions within CEA Cadarache research centre. He/she will be integrated into a research environment with international outreach (collaboration with George Washington University - USA), will publish his/her research outcomes in leading journals in the field, and will participate in international conferences.

[1] A computationally efficient dynamic grid motion approach for Arbitrary Lagrange-Euler simulations, A. Leprevost, V. Faucher, and M. A. Puscas, Fluids, 8(5), 2023.
[2] Longo, L., Capanna, R., Ricciardi, G., & Bardet, P. (2024). Threshold of Keulegan-Carpenter instability within a 6 × 6 rod bundle, Experimental Thermal and Fluid Science

University / doctoral school

Sciences pour l’Ingénieur : Mécanique, Physique, Micro et Nanoélectronique (SIMPMN)
Aix-Marseille Université

Thesis topic location

Site

Cadarache

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

LO PINTO Emmanuel emmanuel.lopinto@cea.fr
CEA
DES/DTN/STCP/LETH
Bâtiment 727 - Porte 109
CEA Cadarache
04 42 25 78 39

Tutor / Responsible thesis director

RICCIARDI Guillaume guillaume.ricciardi@cea.fr
CEA
DEN/DTN/STCP/LETH
CEN Cadarache
DEN/DTN/STCP/LETH
bat. 727
saint paul lez durance cedex
04 42 25 33 20

En savoir plus


https://www.cea.fr/energies/iresne/en/Pages/Ressources/Videos/Our%20means%20of%20research/Video-Laboratory%20for%20hydromechanical%20testing%20and%20studies%20(LETH).aspx