General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DES-25-0199
Thesis topic details
Category
Engineering science
Thesis topics
Superlattices for the characterization of diffusion under irradiation at the atomic scale
Contract
Thèse
Job description
Metal alloys used in nuclear applications are subjected to relatively low temperatures (below 450°C) for long periods of time (more than 10 years). At these temperatures, the kinetics of the diffusion-controlled microstructure transformations are slow. The appearance of certain undesirable phases, likely to embrittle the material, can occur after several years of service. Therefore, diffusion coefficients play a crucial role as input data for modeling the evolution of these microstructures using phenomenological models. However, experimental determination of diffusion coefficients at low temperatures (T < 600°C) is extremely tricky, especially because of the need to characterize nanometric diffusion lengths, a difficulty made all the more difficult in the presence of irradiation.
With the development of chemical analysis by transmission electron microscopy (TEM) and atom probe tomography (APT), it is now possible to experimentally access very small diffusion lengths and thus determine low-temperature diffusion coefficients using superlattices, which consist of stacking nanometric layers of different chemical compositions. We can even characterize the effect of irradiation on diffusion by performing ion irradiations, enabling us to simulate the changes caused by neutron irradiation without activating the materials. The aim of this thesis is to develop a methodology and characterize diffusion under and outside irradiation in a ternary system of interest (Ni-Cr-Fe), representative of the steels and high-entropy considered in the nuclear industry.
This thesis is an opportunity to work with cutting-edge experimental techniques, in close collaboration with a team of theoretician in the same department, as well as with teams specializing in the development of superlattices at UTBM in Belfort and CINAM in Marseille.
University / doctoral school
Physique en Île-de-France (EDPIF)
Paris-Saclay
Thesis topic location
Site
Saclay
Requester
Position start date
01/10/2025
Person to be contacted by the applicant
Rieger Thomas
thomas.rieger@cea.fr
CEA
DES/ISAS/DRMP/SEMI/LM2E
CEA Saclay – Bâtiment 625P – Pièce 20
0169083094
Tutor / Responsible thesis director
Nastar Maylise
maylise.nastar@cea.fr
CEA
DES/DRMP/S2CM/SRMP
CEA/Saclay
Bâtiment 320, Pièce 121
01 69 08 81 94
En savoir plus