Thermohydraulic modelisation of a steam generator and chemical species propagation

Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-25-0241  

Thesis topic details

Category

Engineering science

Thesis topics

Thermohydraulic modelisation of a steam generator and chemical species propagation

Contract

Thèse

Job description

Steam generators are essential components of nuclear reactors whose main function is heat exchange. The chemical species present in steam generators are the cause of many parasitic phenomena (clogging, fouling, sludge deposition, etc.). Numerical simulation of species transport, taking into account the migration of chemical species and exchanges between species, both intra- and inter-phase, will allow a better understanding and better management of these problems. Numerical resolution of species transport systems presents real difficulties, in particular the management of the appearance and total disappearance of certain species, high void rates, as well as rapidly excessive calculation times.

While relying on the new code for nuclear components developed at STMF, the thesis will address the following three main scientific issues:
• Upstream, the analysis of numerical methods allowing in particular the management of evanescence, as mentioned above, and thermo-hydraulic modeling at high void rates. For this, we will rely on the PolyMAC and PolyVEF numerical schemes, already implemented in the component code.
• The physical modeling of a steam generator in the new component code, via the addition (in C++) of correlations specific to steam generators, the completion of the state laws already available, etc..
• The determination of the major chemical species to be transported, in order to be able to take into account both thermo-hydraulics and chemistry. The algorithmic coupling between thermo-hydraulics and chemistry, taking into account feedback, being the long-term objective.

While benefiting from the existing parallelization of the component code, the thermo-hydraulic and chemical modeling will be done taking into account the constraints on computation times.

University / doctoral school

Sciences pour l’Ingénieur : Mécanique, Physique, Micro et Nanoélectronique (SIMPMN)
Aix-Marseille Université

Thesis topic location

Site

Saclay

Requester

Position start date

01/09/2024

Person to be contacted by the applicant

Plessier Alexiane alexiane.plessier@cea.fr
CEA
DES/DM2S/STMF/LMEC

Tutor / Responsible thesis director

Belliard Michel michel.belliard@cea.fr
CEA
DES/DER/SESI/LEMS
CEA Cadarache
DES/IRESNE/DER/SESI/LEMS, Bat 1222
04 42 25 23 17

En savoir plus