Thermoelectric energy conversion in nanofluids for hybrid solar heat collector

Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-24-0358  

Direction

DRF

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Thermoelectric energy conversion in nanofluids for hybrid solar heat collector

Contract

Thèse

Job description

Thermoelectric (TE) materials that are capable of converting heat into electricity have been considered as one possible solution to recover the low-grade waste-heat (from industrial waste-stream, motor engines, household electronic appliances or body-heat).

At SPHYNX, we explore thermoelectric effects in an entirely different class of materials, namely, complex fluids containing electrically charged nanoparticles that serve as both heat and electricity carriers. Unlike in solid materials, there are several inter-dependent TE effects taking place in liquids, resulting in Se values that are generally an order of magnitude larger that the semiconductor counterparts. Furthermore, these fluids are composed of Earth-abundant raw materials, making them attractive for future TE-materials that are low-cost and environmentally friendly. While the precise origins of high Seebeck coefficients in these fluids are still debated, our recent results indicate the decisive role played by the physico-chemical nature of particle-liquid interface.

The goal of the PhD project is two-fold :
- First, we will investigate the underlying laws of thermodynamic mechanisms behind the thermoelectric potential and power generation and other associated phenomena in nanofluids. More specifically, we are interested in how the particles' Eastman entropy of transfer is produced under the influence of thermal, electrical and concentration gradients. The results will be compared to their thermos-diffusive and optical abosrption properties to be obtained through research collaborations.
- Second, the project aims to test the promising nanofluids in the proof-of-concept hybrid solar-collector devices currently developed within the group to demonstrate the co-generation capability of heat and electricity. The hybrid device optimization is also within the project's scope

The proposed research project is primarily experimental, involving thermos-electrical, thermal and electrochemical measurements; implementation of automated data acquisition system and analysis of the resulting data obtained. The notions of thermodynamics, fluid physics and engineering (device) physics, as well as hands-on knowledge of experimental device manipulation are needed. Basic knowledge of optics and electrochemistry is a plus. For motivated students, numerical simulations using commercial CFD software, as well as the optical absorption measurements at the partner lab (LNO/CNR, Florence, Italy) can also be envisaged.

University / doctoral school

Physique en Île-de-France (EDPIF)

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2021

Person to be contacted by the applicant

NAKAMAE Sawako sawako.nakamae@cea.fr
CEA
DRF/IRAMIS/SPEC/SPHYNX
IRAMIS/SPEC
CEA-Saclay
Bât 772
CEA-Saclay
91191 Gif-sur-Yvette
0169087538

Tutor / Responsible thesis director

NAKAMAE Sawako sawako.nakamae@cea.fr
CEA
DRF/IRAMIS/SPEC/SPHYNX
IRAMIS/SPEC
CEA-Saclay
Bât 772
CEA-Saclay
91191 Gif-sur-Yvette
0169087538

En savoir plus

https://iramis.cea.fr/spec/Pisp/sawako.nakamae/
http://iramis.cea.fr/spec/SPHYNX/
https://www.magenta-h2020.eu