Réseaux de neurones bayésiens avec transistors à effet de champ à mémoire ferroélectrique (FeMFETs)

Détail de l'offre

Informations générales

Entité de rattachement

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

• La conscience des responsabilités
• La coopération
• La curiosité
  

Référence

SL-DRT-25-0775  

Direction

DRT

Description du sujet de thèse

Domaine

Défis technologiques

Sujets de thèse

Réseaux de neurones bayésiens avec transistors à effet de champ à mémoire ferroélectrique (FeMFETs)

Contrat

Thèse

Description de l'offre

De plus en plus de systèmes critiques pour la sécurité reposent sur des fonctions d’intelligence artificielle (IA) qui exigent des capacités de calcul robustes et économe en énergie, souvent dans des environnements marqués par une rareté des données et une forte incertitude. Cependant, les approches traditionnelles de l’IA peinent à quantifier la confiance associée à leurs prédictions, ce qui les rend vulnérables à des décisions peu fiables, voire dangereuses.
Cette thèse s’inscrit dans le domaine émergent de l’électronique bayésienne, qui exploite l’aléa intrinsèque de nanodispositifs innovants pour effectuer des calculs bayésiens directement au niveau du matériel. En encodant les distributions de probabilité au sein même du hardware, ces dispositifs permettent une estimation naturelle de l’incertitude, tout en réduisant la complexité computationnelle par rapport aux architectures déterministes classiques.
Des travaux antérieurs ont déjà démontré le potentiel des memristors pour l’inférence bayésienne. Cependant, leur endurance limitée et leur consommation énergétique élevée lors de la programmation représentent des obstacles majeurs à l’apprentissage embarqué sur puce.
Dans cette thèse, il est proposé d’exploiter des composants mémoires emergents ferroelectric memory field-effect transistors (FeMFETs) pour l’implémentation de réseau de neurones bayésiens.

Université / école doctorale

Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes

Localisation du sujet de thèse

Site

Grenoble

Critères candidat

Formation recommandée

Master 2 microélectronique, nanotechnologie, sciences des matériaux, physique

Demandeur

Disponibilité du poste

01/10/2025

Personne à contacter par le candidat

RUMMENS François Francois.RUMMENS@cea.fr
CEA
DRT/DSCIN/DSCIN/LSTA
CEA LIST - Site Nano-INNOV Palaiseau, 8 Avenue de la Vauve
91120 Palaiseau

Tuteur / Responsable de thèse

VIANELLO Elisa elisa.vianello@cea.fr
CEA
DRT/DCOS//LDMC
CEA Leti MINATEC Campus
Laboratoire de Technologies Memoires Avancées
17, rue des Martyrs
38054 Grenoble CEDEX9
0438789092

En savoir plus