Security blind spots in Machine Learning systems: modeling and securing complex ML pipeline and lifecycl

Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-24-0681  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Security blind spots in Machine Learning systems: modeling and securing complex ML pipeline and lifecycle

Contract

Thèse

Job description

With a strong context of regulation of AI at the European scale, several requirements have been proposed for the 'cybersecurity of AI' and more particularly to increase the security of AI systems and not only the core ML models. This is important especially as we are experience an impressive development of large models that are deployed to be adapted to specific tasks in a large variety of platforms and devices. However, considering the security of the overall lifecycle of an AI system is far more complex than the constraint, unrealistic traditional ML pipeline, composed of a static training, then inference steps.

In that context, there is an urgent need to focus on core operations from a ML system that are poorly studied and are real blind spot for the security of AI systems with potentially many vulnerabilities. For that purpose, we need to model the overall complexity of an AI system thanks to MLOps (Machine Learning Operations) that aims to encapsulate all the processes and components including data management, deployment and inference steps as well as the dynamicity of an AI system (regular data and model updates).

Two major “blind spots” are model deployment and systems dynamicity. Regarding deployment, recent works highlight critical security issues related to model-based backdoor attacks processed after training time by replacing small parts of a deep neural network. Additionally, other works focused on security issues against model compression steps (quantization, pruning) that are very classical steps performed to deploy a model into constrained inference devices. For example, a dormant poisoned model may become active only after pruning and/or quantization processes. For systems dynamicity, several open questions remain concerning potential security regressions that may occur when core models of an AI system are dynamically trained and deployed (e.g., because of new training data or regular fine-tuning operations).

The objectives are:
1. model security of modern AI systems lifecycle with a MLOps framework and propose threat models and risk analysis related to critical steps, typically model deployment and continuous training
2. demonstrate and characterize attacks, e.g., attacks targeting the model optimization processes, fine tuning or model updating
3. propose and develop protection schemes and sound evaluation protocols.

University / doctoral school

Sciences et Technologies de l’Information et de la Communication (STIC)
Paris-Saclay

Thesis topic location

Site

Grenoble

Requester

Position start date

01/11/2024

Person to be contacted by the applicant

MOELLIC Pierre-Alain pierre-alain.moellic@cea.fr
CEA
DRT/DSYS//LSES
Centre de Microélectronique de Provence
880 route de Mimet
13120 Gardanne
0442616738

Tutor / Responsible thesis director

GOUY-PAILLER Cédric cedric.gouy-pailler@cea.fr
CEA
DRT/DIN//LIIDE
CEA Saclay
Bâtiment 565, PC 192
91 191 Gif-sur-Yvette
01 69 08 41 87

En savoir plus