Mutiscale modelling of the impact of the dislocation climbing on the mechanical beahviour of UO2 at high

Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-24-0085  

Thesis topic details

Category

Engineering science

Thesis topics

Mutiscale modelling of the impact of the dislocation climbing on the mechanical beahviour of UO2 at high temperature

Contract

Thèse

Job description

Reducing greenhouse gas emissions requires the development of low-carbon energy production systems, including nuclear power. The acceptability of nuclear power requires a high level of safety, and therefore in-depth knowledge of fuel behavior under irradiation to support the development of Scientific Computing Tools (SCTs). A key challenge for these SCTs is to enhance fuel performance, particularly in terms of flexibility with regard to the energy mix and behavior in design basis accidents.
Uranium dioxide (UO2), with its polycrystalline microstructure, is used as the constituent material of fuel pellets in nuclear power reactors. The mechanical behavior of UO2, coupled with irradiation effects, plays an important role in assessing the integrity of the fuel's first containment barrier. One of the challenges of understanding the mechanical behavior of irradiated fuel is to be able to compute the stresses and strains in the grains and at their interfaces with a physically based modelling at the scale of polycrystalline microstructural heterogeneities.
The main objective of the thesis will be to provide reference simulations in support of multi-scale modeling of the dislocation climbing mechanism, a major phenomenon underlying the mechanical behavior of fuel at high temperatures. The development of a coupling between a dislocation dynamics (DD) code and a finite element (FE) code will be carried out in order to best describe the diffusion and dislocation climbing mechanisms. Calculations based on this coupling will then be used to quantify the impact of dislocation climbing on the microstructure and viscoplastic behavior of UO2 fuel. Ultimately, this work will improve the micromechanical modeling using the finite element method implemented in SCTs of the PLEIADES simulation platform developed in the partnership between CEA, EDF and FRAMATOME.
This thesis will be carried out as part of a collaboration between CEA/IRESNE's DEC and Aix Marseille University's IM2NP. The DRMP at CEA/ISAS and the UMET at the University of Lille will also be involved in this collaboration. The thesis work will be carried out at IRESNE in Cadarache, within the Laboratoire de Modélisation du Comportement des Combustibles, in an environment providing access to a high expertise in multi-scale materials modeling. The research work will be promoted through publications and participation in international conferences in the materials field.

University / doctoral school

Sciences pour l’Ingénieur : Mécanique, Physique, Micro et Nanoélectronique (SIMPMN)
Aix-Marseille Université

Thesis topic location

Site

Cadarache

Requester

Position start date

01/11/2023

Person to be contacted by the applicant

PIVANO Adrien adrien.pivano@cea.fr
CEA
DES/IRESNE/DEC/SESC/LM2C
Commissariat à l'énergie atomique et aux énergies alternatives
Centre de Cadarache - Bât - 151
13108 St Paul Lez Durance cedex
+33(0)4 42 25 79 68

Tutor / Responsible thesis director

MICHEL Bruno bruno.michel@cea.fr
CEA
DES/DEC/SESC/LM2C
DEC/SESC/LSC
bat 151
Centre de Cadarache
13108 Saint Paul Lez Durance

04-42-25-34-73

En savoir plus