Pause
Read
CEA vacancy search engine

Building a new effective nuclear interaction model and propagating statistical errors


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-25-0075  

Thesis topic details

Category

Theoretical physics

Thesis topics

Building a new effective nuclear interaction model and propagating statistical errors

Contract

Thèse

Job description

At the very heart of any « many-body » method used to describe the fundamental properties of an atomic nucleus, we find the effective nucleon-nucleon interaction. Such an interaction should be capable of taking into account the nuclear medium effects. In order to obtain it, one has to use a specific fitting protocol that takes into account a variety of nuclear observables such as radii, masses, the centroids of the giant resonances or the properties of the nuclear equation of state around the saturation density.
A well-known model of the strong interaction is the Gogny model. It is a linear combination of coupling constants and operators, plus a radial form factor of the Gaussian type [1]. The coupling constants are determined via a fitting protocol that typically uses the properties of spherical nuclei such as 40-48Ca, 56Ni, 120Sn and 208Pb.
The primary goal of this thesis is to develop a consistent fitting protocol for a generic Gogny interaction in order to access some basic statistical information, such as the covariance matrix and the uncertainties on the coupling constants, in order to be able to perform a full statistical error propagation on some selected nuclear observables calculated with such an interaction [2].
After having analysed the relations between the model parameters and identified their relative importance on how well observables are reproduced, the PhD candidate will explore the possibility of modifying some terms of the interaction itself such as the inclusion of a real three-body term or beyond mean-field effects.
The PhD candidate will work within a nuclear physics group at CEA/IRESNE Cadarache. The work will be done in close collaboration with CEA/DIF. Employment perspectives are in academic research and nuclear R&D labs.

[1] D. Davesne et al. 'Infinite matter properties and zero-range limit of non-relativistic finite-range interactions.' Annals of Physics 375 (2016): 288-312.
[2] T. Haverinen and M. Kortelainen. 'Uncertainty propagation within the UNEDF models.' Journal of Physics G: Nuclear and Particle Physics 44.4 (2017): 044008.

University / doctoral school

Physique et Astrophysique de Lyon (PHAST)
Université de Lyon

Thesis topic location

Site

Cadarache

Requester

Position start date

01/09/2025

Person to be contacted by the applicant

Pastore Alessandro alessandro.pastore@cea.fr
CEA
DES/DER/SPRC/LEPH
CEA, DES, IRESNE, DER, SPRC, F-13108 Saint Paul Lez Durance, France
0442253875

Tutor / Responsible thesis director

Pastore Alessandro alessandro.pastore@cea.fr
CEA
DES/DER/SPRC/LEPH
CEA, DES, IRESNE, DER, SPRC, F-13108 Saint Paul Lez Durance, France
0442253875

En savoir plus