Pause
Read
CEA vacancy search engine

Multi-modal in situ nuclear magnetic resonance analysis of electrochemical phenomena in commercial batte


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-26-0079  

Direction

DRF

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Multi-modal in situ nuclear magnetic resonance analysis of electrochemical phenomena in commercial battery prototypes

Contract

Thèse

Job description

Advancing electrochemical energy storage technologies is impossible without a molecular-level understand-ing of processes as they occur in practical, commercial-type devices. Aspects of the battery design, such as the chemistry and thickness of electrodes, as well as configurations of current collectors and tabs, influence the electronic and ionic current density distributions and determine kinetic limitations of solid-state ion transport. These effects, in turn, modulate the overall battery performance and longevity. For these reasons, optimistic outcomes of conventional ‘coin’ cell tests often do not converge into high-performance commercial cells. Safety concerns associated with high energy density and flammable components of batteries are another subject paramount for conversion from fossil to green energy sources.
Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) are exceptionally sensitive to the structural environment and dynamics of most elements in active battery materials.
Recently, plug-and-play NMR and surface-scan MRI methods have been introduced. In the context of fun-damental electrochemical research, merging two innovative complementary concepts within one multi-modal (NMR-MRI) device would enable diverse analytical solutions and reliable battery performance metrics for academia and the energy sector.
In this project, an advanced analytical framework for in situ analysis of fundamental phenomena such as sol-id-state ion transport, intercalation and associated phase transitions, metal plating dynamics, electrolyte deg-radation and mechanical defects in commercial Li- and Na-ion batteries under various operational conditions will be developed. A range of multi-modal (NMR-MRI) sensors will be developed and employed for deep analysis of fundamental electrochemical processes in commercial battery cells and small battery packs.

University / doctoral school


Thesis topic location

Site

Saclay

Requester

Person to be contacted by the applicant

Romanenko Konstantin konstantin.romanenko@cea.fr
CEA
DRF/IRAMIS/NIMBE/LSDRM
CEA SACLAY
DRF/IRAMIS/NIMBE/LSDRM
Bat. 129
PC n°9
91191 Gif sur Yvette

0745537015

Tutor / Responsible thesis director

HUBER Gaspard gaspard.huber@cea.fr
CEA
DRF/IRAMIS/NIMBE/LSDRM
Laboratoire de Structure et Dynamique par Résonance Magnétique
DRF / IRAMIS / NIMBE
Bâtiment 125 - PC n°9
CEA Saclay
91191 Gif-sur-Yvette Cedex
FRANCE
01 69 08 64 82

En savoir plus