Pause
Read
CEA vacancy search engine

Super-gain miniature antennas with circular polarization and electronic beam steering


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-24-0846  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Super-gain miniature antennas with circular polarization and electronic beam steering

Contract

Thèse

Job description

Antenna radiation control in terms of shape and polarization is a key element for future communication systems. Directive compact antennas offer new opportunities for wireless applications in terms of spatial selectivity and filtering. This leads to a reduction in electromagnetic pollution by mitigating interferences with other communication systems and reducing battery consumption in compact smart devices (IoT), while enabling also new use modes. However, the conventional techniques for enhancing the directivity often lead to a significant increase of the antenna size. Consequently, the integration of directional antennas in small wireless devices is limited. This difficulty is particularly critical for the frequency bands below 3 GHz if object dimensions are limited to a few centimeters. Super directive/gain compact antennas with beam-steering capabilities and operating on a wideband or on multi-bands are an innovative and attractive solution for the development of new applications in the field of the connected objects. In fact, the possibility to control electronically the antenna radiation properties is an important characteristic for the development of the future generation and smart communication systems. CEA Leti has a very strong expertise in the domain of superdirective antennas demonstrating the potentials of the use of ultra-compact parasitic antenna arrays. This PhD project will take place at CEA Leti Grenoble in the antennas and propagation laboratory (LAPCI). The main objectives of this work are: i) contribution to development of numerical tools for the design and optimization of superdirective compact arrays with beam-steering capabilities; ii) the study of new elementary sources for compact antenna arrays; iii) the realization and experimental characterization of a supergain compact array with circular polarization and beam-steering capabilities. This work will combine theoretical studies and model developments, antenna design using 3D electromagnetic software, prototyping and experimentations.

University / doctoral school

Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

BATEL Lotfi lotfi.batel@cea.fr
CEA
DRT/DSYS/LAPCI
MINATEC Campus
Bat 51D411
17 Avenue des Martyrs
38000 Grenoble
0438786171

Tutor / Responsible thesis director

DELAVEAUD Christophe christophe.delaveaud@cea.fr
CEA
DRT/DSYS/LAPCI
CEA, LETI, Minatec
F38054 Grenoble, France

04 38 78 35 91

En savoir plus