General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRF-26-0135
Direction
DRF
Thesis topic details
Category
Life Sciences
Thesis topics
Chemical biology approaches to rare earth toxicology in Humans
Contract
Thèse
Job description
Recent technological developments have expanded and intensified the use of lanthanides in domains as diverse as renewable energy, computing, and medicine. Increasing usage of these metals raises the question of their impact on the environment and human health. However, the potential toxicity of these metal ions, and its underlying molecular mechanisms, are still little known and rarely investigated in human cell models. The goal of the PhD will be to investigate the human cells response to exposure to Ln ions, and to systematically identify the proteins involved in this response, using a set of chemical and biological tools. In particular, we want to address the following questions: which protein networks are activated or deactivated following Ln exposure? Do Ln ions affect phosphorylation of proteins? Which proteins are directly interacting with Ln ions? will thus decipher what are the key biological interactors of lanthanides, their roles in living systems and the features that enable efficient binding to metals. We expect that our findings will give insights into the toxicology of those elements and inform environmental and occupational safety policies. On the longer term, new bio-inspired strategies for their extraction, recycling, decorporation and remediation will arise from the molecular understanding of metal-life interactions, enabling a well thought-out usage of these elements to support the environmental and numerical transitions.s
University / doctoral school
Chimie et Sciences du Vivant (EDCSV)
Université Grenoble Alpes
Thesis topic location
Site
Grenoble
Requester
Position start date
01/10/2026
Person to be contacted by the applicant
HOSTACHY Sarah
sarah.hostachy@cea.fr
CEA
DRF/IRIG//SYMMES
Laboratoire SyMMES (UMR CEA UGA CNRS 5819)
IRIG/DIESE/SyMMES/CIBEST
CEA Grenoble
17 rue des martyrs
38054 Grenoble cedex 9
France
+33 4 38 78 10 33
Tutor / Responsible thesis director
DELANGLE Pascale
pascale.delangle@cea.fr
CEA
DRF/IRIG/DIESE/SyMMES
Laboratoire SyMMES (UMR CEA UGA CNRS 5819)
IRIG/DIESE
CEA Grenoble
17 rue des martyrs
38054 Grenoble cedex 9
France
+33 4 38 78 43 89
En savoir plus
https://www.symmes.fr/Pages/Portrait/Sarah-Hostachy.aspx
https://www.symmes.fr/Pages/CIBEST/Presentation.aspx