Pause
Read
CEA vacancy search engine

PRObablistic on-edge learning for SPINtronic-based neuromorphic systems


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0137  

Direction

DRF

Thesis topic details

Category

Engineering science

Thesis topics

PRObablistic on-edge learning for SPINtronic-based neuromorphic systems

Contract

Thèse

Job description

The hired joint UGA – KIT PHD candidate should be able to cover the work of the workpackage 1 and 2. He/she will also participate to technical meetings and have a good understanding on how the tasks of the other technical workpackages are executed, mainly by the partners with internal effort. As a whole, the PHD candidate will develop and optimize compact Computing in Memory architectures, provide high level models for further integration in large scale designs, perform validation of all proofs of concepts of new architectural implementations. He/she will be involved also in the design of algorithmic implementations of Bayesian Neural Networks adapted to the architecture. More in details, he/she will work on the following directions:
Design and optimization of the probabilistic neural networks, will be executed mostly in SPINTEC Laboratory in Grenoble, that will include:
1. full design stack of hardware accelerator without selector transistor for frequent Read and Write operations.
2. Design and validate an innovative architectural approach able to compensate for sneaky paths phenomena.
3. High-level modeling of the full crossbar architecture that includes the stochastic component.
4. Propose a full simulation and validation flow scalable to scaled to realistic architecture size and parameters that implement Bayesian tasks.
5. Perform Delay, power consumption and area overhead figures of merit

University / doctoral school

Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Person to be contacted by the applicant

ANGHEL Lorena lorena.anghel@grenoble-inp.fr
Grenoble INPG
Laboratoire SPINTEC

06 82 31 26 47

Tutor / Responsible thesis director

ANGHEL Lorena lorena.anghel@grenoble-inp.fr
Grenoble INPG
Laboratoire SPINTEC

06 82 31 26 47

En savoir plus