Characterization and calibration of cryogenic detectors at the 100 eV scale for the detection of coherent neutrino scattering (CEvNS)
DESCRIPTIONS:
The NUCLEUS experiment [1] aims to detect reactor neutrinos via coherent elastic neutrino–nucleus scattering (CEvNS). Predicted in 1974 and first observed in 2017, this process provides a unique opportunity to test the Standard Model at low energies. Because the scattering is coherent over the entire nucleus, the cross section is enhanced by several orders of magnitude, making CEvNS also promising for reactor monitoring using neutrinos.
The NUCLEUS experimental setup is currently being installed near the EDF nuclear reactors in Chooz (Ardennes, France), which constitute an intense neutrino source. The only physical signal of a CEvNS event is the tiny recoil of the target nucleus, with an energy below 1 keV. To detect this, NUCLEUS uses CaWO4 crystals of about 1 g, placed in a cryostat cooled to 15 mK. The nuclear recoil produces vibrations in the crystal lattice, equivalent to a temperature rise of about 100 µK, measured with a Transition Edge Sensor (TES) deposited on the crystal. These detectors achieve excellent energy resolutions of only a few eV and detection thresholds on the order of ~10 eV [2]. The NUCLEUS setup was successfully tested and validated in 2024 at TU Munich [3], and data taking at Chooz is scheduled to start in summer 2026, simultaneously with the beginning of the PhD. An initial contribution will involve data acquisition and analysis at the reactor site. More specifically, the PhD student will be responsible for the characterization of the deployed cryogenic CaWO4 detectors — stability, energy resolution, calibration, and intrinsic background of the crystal.
Calibration at the sub-keV scale is a crucial challenge for CEvNS (and dark matter) experiments. Until recently, it was extremely difficult to generate nuclear recoils of known energy to characterize detector responses. The CRAB method [4, 5] addresses this issue by using thermal neutron capture (25 meV) on nuclei that constitute the cryogenic detector. The resulting compound nucleus has a well-known excitation energy — the neutron separation energy — between 5 and 8 MeV, depending on the isotope. When it de-excites by emitting a single gamma photon, the nucleus recoils with a precisely determined energy given by two-body kinematics. A calibration peak in the desired energy range of a few hundred eV then appears in the detector’s energy spectrum. A first measurement in 2022, using a NUCLEUS CaWO4 detector and a commercial ²5²Cf neutron source, validated this method [6].
The second part of the PhD will take place within the “high-precision” phase of the project, which consists in performing measurements with a pure thermal neutron beam from the TRIGA-Mark-II reactor in Vienna (TU Wien, Austria). The calibration setup was successfully installed and characterized in 2025 [7]. It consists of a cryostat housing the cryogenic detectors to be characterized, surrounded by large BaF2 crystals for coincidence detection of the nuclear recoil and the gamma ray that induced it. The whole setup is placed directly on the neutron beam axis, which provides a flux of about 450 n/cm²/s. This coincidence technique will significantly reduce background and extend the CRAB method to a wider energy range and to materials used in most cryogenic detectors. These measurements are expected to provide a unique characterization of the response of cryogenic detectors in the energy region of interest for light dark matter searches and coherent neutrino scattering. In parallel with the measurement of nuclear recoils, the installation of a low-energy X-ray source in the cryostat will generate electronic recoils, enabling a direct comparison between the detector responses to sub-keV energy deposits produced by nuclear and electronic recoils.
The arrival of the PhD student will coincide with the completion of the measurement program on CaWO4 and Al2O3 detectors of NUCLEUS and with the start of the measurement programs on Ge (TESSERACT project) and Si (BULLKID project) detectors.
The high-precision measurements will also open a new sensitivity window to subtle effects coupling nuclear physics(nuclear de-excitation times) and solid-state physics (nuclear recoil times in matter, and the creation of crystal defects induced by nuclear recoils) [8].
The PhD student will be deeply involved in all aspects of the experiment: simulation, data analysis, and interpretation of the obtained results.
WORK PLAN:
The PhD student will actively participate in data taking and in the analysis of the first results from the NUCLEUS cryogenic CaWO4 detectors at Chooz. This work will be carried out in collaboration with the Nuclear Physics Department (DPhN), the Particle Physics Department (DPhP) of CEA-Saclay, and the TU Munich team. It will begin with familiarization with the CAIT analysis framework used for cryogenic detectors. The student will focus in particular on detector calibration, studying the detector response to electronic recoils induced by optical photon pulses injected through fibers and by X-ray fluorescence generated by cosmic rays. Once this calibration is established, two types of backgrounds will be investigated: Nuclear recoils in the keV range induced by cosmogenic fast neutrons, and a low-energy background, known as the Low Energy Excess (LEE), intrinsic to the detector.
The comparison between the experimental and simulated fast neutron background spectra will be analyzed in light of the differences between nuclear and electronic recoil responses measured in the CRAB project. The long data-taking periods at the Chooz site will also be used to study the time evolution of the LEE background. This work will be conducted in collaboration with solid-state physics experts from the Institute for Applied Sciences and Simulation (CEA/ISAS) to better understand the origin of the LEE, which remains a major open question in the cryogenic detector community.
The analysis skills acquired on NUCLEUS will then be applied to the high-precision CRAB measurement campaigns planned for 2027 at the TRIGA reactor (TU Wien) with Ge and Si detectors. The student will be deeply involved in the setup, data acquisition, and analysis of results. The planned measurements on germanium, using both phonon and ionization channels, have the potential to resolve the current ambiguity in the ionization yield of low-energy nuclear recoils, a key factor for the sensitivity of future experiments.
The high calibration precision will also be exploited to study fine effects in nuclear and solid-state physics, such as timing effects and crystal defect formation induced by nuclear recoils in the detector. This study will be conducted in synergy with teams from CEA/IRESNE and CEA/ISAS, who provide detailed simulations of nuclear de-excitation gamma cascades and molecular dynamics simulations of nuclear recoil propagation in matter.
Through this work, the student will receive comprehensive training as an experimental physicist, including strong components in simulation and data analysis, as well as hands-on experience with cryogenic techniques during the commissioning of the NUCLEUS and CRAB detectors. The proposed contributions are expected to lead to several publications during the PhD, with high visibility in the CEvNS and dark matter communities. Within the CEA, the student will also benefit from the exceptionally cross-disciplinary nature of this project, which already
fosters regular interaction among the communities of nuclear physics, particle physics and condensed matter physics.
COLLABORATIONS:
NUCLEUS: Germany (TU-Munich, MPP), Austria (HEPHY, TU-Wien), Italy (INFN), France (CEA-Saclay).
CRAB: Germany (TU-Munich, MPP), Austria (HEPHY, TU-Wien), Italy (INFN), France (CEA-Saclay, CNRS-IJCLab, CNRS-IP2I, CNRS-LPSC).
BIBLIOGRAPHY:
[1] NUCLEUS Collaboration, Exploring CE?NS with NUCLEUS at the Chooz nuclear power plant, The European Physical Journal C 79 (2019) 1018.
15, 48, 160, 174
[2] R. Strauss et al., Gram-scale cryogenic calorimeters for rare-event searches, Phys. Rev. D 96 (2017) 022009. 16, 18, 78, 174
[3] H. Abele et al., Particle background characterization and prediction for the NUCLEUS reactor CE?NS experiment, https://arxiv.org/abs/2509.03559
[4] L. Thulliez, D. Lhuillier et al. Calibration of nuclear recoils at the 100 eV scale using neutron capture, JINST 16 (2021) 07, P07032
(https://arxiv.org/abs/2011.13803)
[5]https://irfu.cea.fr/dphp/Phocea/Vie_des_labos/Ast/ast.php?id_ast=4970
[6] H. Abele et al., Observation of a nuclear recoil peak at the 100 eV scale induced by neutron capture, Phys. Rev. Lett. 130, 211802 (2023) (https://arxiv.org/abs/2211.03631)
[7] H.Abele et al., The CRAB facility at the TUWien TRIGA reactor: status and related physics program, (https://arxiv.org/abs/2505.15227)
[8] G. Soum-Sidikov et al., Study of collision and ?-cascade times following neutron-capture processes in cryogenic detectors Phys. Rev. D
108, 072009 (2023) (https://arxiv.org/abs/2305.10139)