Pause
Read
CEA vacancy search engine

Characterization of motor recovery in stroke patients during a BCI-guided rehabilitation

Previous vacancy
 0 / 493 vacancy 
Next vacancy

Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-25-0545  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Characterization of motor recovery in stroke patients during a BCI-guided rehabilitation

Contract

Thèse

Job description

Brain-computer interfaces (BCIs) make it possible to restore lost functions by allowing individuals to control external devices through the modulation of their brain activity. The CEA has developed a BCI technology based on the WIMAGINE implant, which records brain activity using electrocorticography (ECoG), along with algorithms for decoding motor intentions. This technology was initially tested for controlling robotic effectors such as exoskeletons and spinal cord stimulation devices to compensate for severe motor impairments. While this initial paradigm of substitution and compensation is promising, a different application potential is now emerging: functional recovery through BCI-guided rehabilitation. Current literature suggests that BCIs, when used intensively and in a targeted manner, can promote neural plasticity and, in turn, improve residual motor abilities. In particular, ECoG-based implanted BCIs could offer significant therapeutic outcomes. The objective of this thesis is therefore to assess the potential of CEA's BCI technology to enhance patients' residual motor functions through neural plasticity.
This work will be approached through a rigorous and multidisciplinary scientific methodology, including a comprehensive review of the scientific literature, the setup and execution of experimentations with patients, the algorithmic development of tools for monitoring and analyzing patient progress, and the publication of significant results in high-level scientific journals.
This PhD is intended for a student specializing in biomedical engineering, with expertise in signal processing and the analysis of complex physiological data, as well as experience in Python or Matlab. A strong interest in clinical experimentation and neuroscience will also be required. The student will work within a multidisciplinary team at CLINATEC, contributing to cutting-edge research in the field of BCIs.

University / doctoral school

Chimie et Sciences du Vivant (EDCSV)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

STRUBER Lucas lucas.struber@cea.fr
CEA
DRT/DTIS//LCDDM
CEA Grenoble
17 Avenue des Martyrs
0438789436

Tutor / Responsible thesis director

DETANTE Olivier ODetante@chu-grenoble.fr
CHUGA / UGA
Neurologie / GIN
CS10217, 38043 Grenoble
04 76 76 57 89

En savoir plus