General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRF-26-0225
Direction
DRF
Thesis topic details
Category
Condensed Matter Physics, chemistry, nanosciences
Thesis topics
Photo- and thermocatalytic cross-coupling of esters for the synthesis of biosourced alkenes
Contract
Thèse
Job description
The easy access to energy and carbon-based raw materials offered by the fossil feedstock allowed a rapid growth of our society. Nevertheless, the expected depletion of fossil resources and climate change, require changing for a more sustainable model. Bio-based feedstock is a promising source of carbon to substitute petrochemicals but require a drastic change of the actual model. While the current paradigm relies on the production of energy and high-value molecules through oxidation steps, a model based on Carbon Circular Economy, i.e. the transformation of CO2 and biomass feedstock that are already highly oxidized materials demands the development of new methodologies for reduction, deoxygenation, and the direct use of oxygenated bonds to access functionalized and useful organic molecules.
In organic chemistry, cross-coupling reactions represent one of the major tools to create C–C bonds. However, they are still based mainly on the use of organic halides as electrophiles. In this project, the PhD candidate will demonstrate that readily available and abundant alkyl esters can serve as electrophilic coupling partners in catalyzed cross-coupling reactions with alkenes. Esters can indeed be directly biosourced or easily synthesized from alkyl carboxylic acids and alcohols, thereby diminishing the environmental impact of the carbon-carbon bond formation.
University / doctoral school
Thesis topic location
Site
Saclay
Requester
Position start date
01/10/2026
Person to be contacted by the applicant
ANTHORE Lucile
lucile.anthore@cea.fr
CEA
DRF/IRAMIS/NIMBE/LCMCE
IRAMIS/NIMBE/LCMCE
Bât 125, CEA Saclay
91191 Gif-sur-Yvette Cedex
01 69 08 91 59
Tutor / Responsible thesis director
ANTHORE Lucile
lucile.anthore@cea.fr
CEA
DRF/IRAMIS/NIMBE/LCMCE
IRAMIS/NIMBE/LCMCE
Bât 125, CEA Saclay
91191 Gif-sur-Yvette Cedex
01 69 08 91 59
En savoir plus
https://iramis.cea.fr/en/nimbe/lcmce/pisp/lucile-anthore-dalion/
https://iramis.cea.fr/en/nimbe/lcmce/