General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DES-26-0176
Thesis topic details
Category
Corpuscular physics and outer space
Thesis topics
Designing a hybrid CPU-GPU estimator for neutron transport: Advancing eco-efficient Monte Carlo simulations
Contract
Thèse
Job description
Digital twins incorporating Monte Carlo simulation models are currently being developed for the design, operation, and decommissioning of nuclear facilities. These twins are capable of predicting physical quantities such as particle fluxes, gamma/neutron heating, and dose equivalent rates. However, the Monte Carlo method presents a major drawback: high computational time to achieve acceptable variance levels.
To enhance simulation efficiency, the eTLE estimator has been developed and integrated into the TRIPOLI-4® Monte Carlo code. Compared to the conventional TLE (Track Length Estimator), eTLE offers lower theoretical variance, particularly in highly absorbing media, by contributing to the detector response even when particles do not physically reach it. Nevertheless, its computational cost remains significant, especially when evaluating multiple detectors.
Two recent PhD works have proposed variants to overcome this limitation. The Forced Detection eTLE- (Guadagni, EPJ Plus 2021) employs preferential sampling that directs pseudo-particles toward the detector at each collision. It is particularly effective for small detectors and configurations with moderate shielding, especially for fast neutrons. The Split Exponential TLE (Hutinet & Antonsanti, EPJ Web 2024) is based on an asynchronous GPU approach, offloading straight-line particle transport to the graphics processor. Through multiple sampling, it maximizes GPU utilization and enables more efficient exploration of phase space.
The proposed thesis aims to combine these two approaches into a hybrid estimator named seTLE-DF. This new estimator could be used either directly or to generate importance maps without relying on auxiliary deterministic calculations. Its implementation will require dedicated GPU developments, particularly to optimize the geometry library and memory management in complex geometries.
This research topic aligns with green computing objectives, aiming to reduce the carbon footprint of high-performance computing. It relies on a hybrid CPU-GPU strategy, avoiding full porting of the Monte Carlo code to GPU. Solutions such as half-precision formats will be considered, and an energy impact assessment will be conducted before and after implementation. The future PhD student will be welcomed with the IRESNE Institute (CEA Cadarache)and will acquire strong expertise in neutron transport simulation, facilitating integration into major research institutions or companies within the nuclear sector.
University / doctoral school
Physique et Sciences de la Matière (ED352)
Aix-Marseille Université
Thesis topic location
Site
Cadarache
Requester
Position start date
01/11/2026
Person to be contacted by the applicant
LE LOIREC Cindy
Cindy.LELOIREC@cea.fr
CEA
DES/DER/SPRC/LPN
CEA Cadarache | F-13108 Saint-Paul-lez-Durance Cedex
+33 (0)4 42 25 40 62
Tutor / Responsible thesis director
LE LOIREC Cindy
Cindy.LELOIREC@cea.fr
CEA
DES/DER/SPRC/LPN
CEA Cadarache | F-13108 Saint-Paul-lez-Durance Cedex
+33 (0)4 42 25 40 62
En savoir plus