Pause
Read
CEA vacancy search engine

Development of a Multilayer Encapsulation System for the Production of Core-Shell Microcapsules Suitable


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-25-0540  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Development of a Multilayer Encapsulation System for the Production of Core-Shell Microcapsules Suitable for Organoid Growth

Contract

Thèse

Job description

Every year, 20 million people worldwide are diagnosed with cancer, with 9.7 million succumbing to the disease (Kocarnik et al., 2021). Personalized treatment could significantly reduce the number of deaths. This thesis addresses this challenge by proposing the development of organoids derived from patient biopsies to optimize treatments.

The bioproduction of encapsulated cells in biopolymers is a rapidly growing field, with applications in personalized medicine, research, drug screening, cell therapies, and bioengineering. This thesis aims to contribute to these fields by focusing on the multilayer encapsulation of cells in biopolymers with a wide range of viscosities.

The inner layer (core) provides an optimal environment for the maturation and survival of cells or organoids, while the outer layer (shell) ensures mechanical protection and acts as a filtering barrier against pathogens.

This new thesis aims to design, develop, and study—both analytically and numerically—the architecture of a dual-compartment nozzle for the high-frequency production of monodisperse core-shell capsules. It builds upon a previous thesis completed in 2023, which focused on the detailed characterization and development of a predictive model for the generation of single-layer microcapsules using centrifugal force alone.

The formation and ejection mechanisms of multilayer capsules are complex, involving the rheological properties of biopolymers, centrifugal force, surface tension, and interfacial dynamics. The nozzle architecture must account for these properties.

The first part of this thesis will focus on understanding the multilayer formation and ejection mechanisms of microcapsules as a function of nozzle geometry. This will allow the prediction and control of capsule formation based on the rheological properties of the biopolymers. The second part will involve developing an automated system for the aseptic production of capsules. Finally, biological validation will assess the functionality and reliability of the developed technology.

To achieve the objectives of this study, the candidate will first conduct analytical and numerical studies, design the ejection nozzles, and leverage the laboratory's expertise for their fabrication. Fluidic tests on prototypes will help optimize the design, leading to the development and testing of a fully operational microcapsule production system.

The ideal candidate will have a background in physics, engineering, and fluid mechanics, with a strong inclination for experimental approaches. Prior experience in microfluidics or biology would be a valuable asset.

University / doctoral school

Ingénierie - Matériaux - Environnement - Energétique - Procédés - Production (IMEP2)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

BOTTAUSCI Frédéric frederic.bottausci@cea.fr
CEA
DRT/DTBS/SEMIV/LSMB
17, rue des Martyrs
38054 Grenoble Cedex

CEA/Grenoble
04 38 78 05 58

Tutor / Responsible thesis director

GHIGLIOTTI Giovanni giovanni.ghigliotti@univ-grenoble-alpes.fr
Université Grenoble Alpes
MOdélisation et Simulation de la Turbulence
Laboratoire LEGI
1209-1211 rue de la piscine
Domaine Universitaire
38400 Saint Martin d’Hères
France
+33 (0)4 76 82 51 70

En savoir plus