Pause
Read
CEA vacancy search engine

Development of microfluidic photoreactors for reproducible, quantitative evaluation of photoactive mater


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0798  

Direction

DRF

Thesis topic details

Category

Engineering science

Thesis topics

Development of microfluidic photoreactors for reproducible, quantitative evaluation of photoactive materials, coupled with on-line analysis by mass spectrometry and gas chromatography

Contract

Thèse

Job description

The development of high performance photoactive materials (catalysts, semiconductors, sensitive films) for chemical conversion under light irradiation requires precise, reproducible and quantitative evaluation methods. Conventional batch approaches suffer from major limitations: poor control over residence time, temperature or light gradients, low exposed specific surface area and variable reproducibility. In this context, microfluidic photoreactors offer a promising alternative for structured screening and fine evaluation of photoactive materials, in particular thanks to their high surface/volume ratio, flow control and geometry adaptable to different irradiation configurations.
This work, linked to the PEPR LUMA SUNRISE project, aims to design, fabricate and characterize photonic microreactors specifically adapted to the fine evaluation of photoactive materials. The aim is to create a platform capable of generating quantitative and comparable data on the performance and stability of these materials, under well-defined conditions of throughput, irradiation and reaction environment, and then to couple them to high-level analytical techniques (GC, MS) for on-line identification of the products generated.
We propose to develop 4 axes during this thesis project: 1) development, characterization and optimization of the microfluidic platform for online liquid and gas measurement; 2) implementation of protocols for the deposition of photoactive materials 3) evaluation of photochemical performance and validation of the system with samples provided (SUNRISE partners) and on the degradation of pollutant by photochemistry (collaboration with a thesis in progress at the laboratory) and 4) Coupling of the reactor to online analytical methods (GC, MS).

University / doctoral school

Physique et Ingénierie: électrons, photons et sciences du vivant (EOBE)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

LE CAER Sophie sophie.le-caer@cea.fr
CNRS
DRF/IRAMIS/NIMBE/LIONS
DRF/IRAMIS/NIMBE/LIONS
Bât.546
CEA Saclay
91191 GIf/Yvette
01 69 08 15 58

Tutor / Responsible thesis director

Malloggi Florent florent.malloggi@cea.fr
CEA
DSM/IRAMIS/NIMBE/LIONS
Florent Malloggi Dr
CEA Saclay
UMR 3685 CEA/CNRS
DRF/IRAMIS/NIMBE-LIONS
Bât.125
91191 Gif-sur Yvette, France
Tel: +33 16908 6328


+3316908 6328

En savoir plus

https://iramis.cea.fr/en/nimbe/lions/pisp/florent-malloggi/
https://iramis.cea.fr/en/nimbe/lions/