Pause
Read
CEA vacancy search engine

Magnetic DIsks as Transducer of Angular Momentum


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0429  

Direction

DRF

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Magnetic DIsks as Transducer of Angular Momentum

Contract

Thèse

Job description

The proposed topic is a collaborative project to exploit suspended magnetic disks as novel microwave transducers of orbital angular momentum. Our goal is to develop ultra-high fidelity opto-mechanical modulators operating at GHz frequencies by integrating magnetic materials into optical components. This innovative concept arises from recent progress in the study of angular momentum conservation laws by magnon modes in axi-symmetric cavities, leading to new opportunities to develop a more frugal, agile, and sustainable communications technology. Our proposed design has the potential to achieve coherent interconversion between the microwave frequency range in which wireless networks or quantum computers operate and optical network frequencies, which is the optimal frequency range for long-distance communications. In this regard, our proposal not only proposes new applications of magnonics to the field of optics not previously envisioned, but also builds a bridge between the spintronics and the electronic and quantum communities.
In this proposal, the elastic deformations are generated by the magnetization dynamics through the magneto-elastic tensor and its contactless coupling to a microwave circuit. We have shown that coherent coupling between magnons and phonons can be achieved by precisely tuning the magnetic resonance degenerate with a selected elastic mode via the application of an external magnetic field. We expect to achieve ultra-high fidelity conversion by focusing our study on micron-sized single crystal magnetic garnet structures integrated with GaAs photonic waveguides or cavities. In addition, we propose the fabrication of suspended cavities as a means to minimize further energy leakage (elastic or optical) through the substrate.
The first challenge is to produce hybrid materials that integrate high quality garnet films with semiconductors. We propose a radically new approach based on micron-thick magnetic garnet films grown by liquid phase epitaxy (LPE) on a gadolinium-gallium-garnet (GGG) substrate. The originality is to bond the flipped film to a semiconductor wafer and then remove most of the the GGG substrate by mechanical polishing. The resulting multi-layer is then processed using standard lithography techniques, taking advantage of the relative robustness of garnet materials to chemical, thermal or milling processes.
The second challenge is to go beyond the excitation of uniform modes and target modes with orbital angular momentum as encoders of arbitrarily large quanta of nJ? for mode multiplexed communication channels or multi-level quantum state registers. The project will take advantage of recent advances in spin-orbit coupling between azimuthal spin waves as well as elastic scattering of magnons on anisotropic magneto-crystalline tensors. In this project, we also want to go beyond uniformly magnetized state and exploit the ability to continuously morph the equilibrium magnetic texture in the azimuthal direction as a means of engineering the selection rules and thus coherently access otherwise hidden mode symmetries.

University / doctoral school

Ecole Doctorale de Physique de Grenoble (EdPHYS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

KLEIN Olivier olivier.klein@cea.fr
CEA
DRF/INAC/SPINTEC/SPINTEC
CEA-Grenoble
17 rue des Martyrs
38054 GRENOBLE Cedex 9


0438785802

Tutor / Responsible thesis director

KLEIN Olivier olivier.klein@cea.fr
CEA
DRF/INAC/SPINTEC/SPINTEC
CEA-Grenoble
17 rue des Martyrs
38054 GRENOBLE Cedex 9


0438785802

En savoir plus