Pause
Read
CEA vacancy search engine

Fracture dynamics in crystalline layer transfer technology


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-25-0335  

Direction

DRT

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Fracture dynamics in crystalline layer transfer technology

Contract

Thèse

Job description

Smart Cut™ is a technology discovered at CEA and now industrially used for the manufacture of advanced substrates for electronics. However, the physical phenomena involved are still the focus of numerous studies at CEA. In Smart Cut™, a thin material layer is transferred from one wafer to another using a key fracture annealing step upon which a macroscopic fracture initiate & propagates at several km/s [i].
____________

Improving technology requires a solid understanding of the physical phenomena involved in the fracture step. The aim of this PhD project is thus to address the mechanisms involved in fracture initiation, propagation and post-fracture vibrations
____________

On the CEA-Grenoble site, with industrial interest, the student will use and further develop existing experimental setups to investigate the fracture behavior in brittle materials, including optical laser reflections [iv], time-resolved synchrotron diffracting imaging [iii], and ultra-fast direct imaging [ii].
In addition, python-based data analysis algorithms will be developed to extract quantitative information from the different datasets. This will enable the student to determine involved mechanisms and evaluate the influence of the wafer processing parameters on the fracture behavior, and thus propose improvement methods.


References :
[i] https://pubs.aip.org/aip/apl/article/107/9/092102/594044
[ii] https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.024068
[ii] https://journals.iucr.org/j/issues/2022/04/00/vb5040/index.html
[iv] https://pubs.aip.org/aip/jap/article/129/18/185103/158396

University / doctoral school

Ecole Doctorale de Physique de Grenoble (EdPHYS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

COLONEL Lucas lucas.colonel@cea.fr
CEA
DRT/LETI/DPFT
CEA-Grenoble
17 rue des Martyrs
F-38054 GRENOBLE Cedex 9
France
0438782819

Tutor / Responsible thesis director

TARDIF Samuel samuel.tardif@cea.fr
CEA
DRF/IRIG//MEM
CEA-Grenoble
17 rue des Martyrs
F-38054 GRENOBLE Cedex 9
France
0438782819

En savoir plus