Pause
Read
CEA vacancy search engine

Effects of structural heterogeneities on air flow through reinforced concrete walls


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-26-0004  

Thesis topic details

Category

Engineering science

Thesis topics

Effects of structural heterogeneities on air flow through reinforced concrete walls

Contract

Thèse

Job description

The containment building represents the third barrier to confinement in nuclear power plants. Its role is to protect the environment in the event of a hypothetical accident by limiting releases to the outside. Its function is therefore closely linked to its tightness. Traditionally, the estimation of the leakage rate is based on a sound knowledge of transfer properties (such as permeability), combined with a chained (thermo-)hydro-mechanical simulation approach. While the mechanical behavior of the structure is now broadly well understood, progress is still needed in the comprehension and quantification of fluid flow. This is particularly true in the presence of heterogeneities (cracks, honeycombs, construction joints, reinforcements, cables, etc.), which represent situations that can locally disturb permeability. This is the context of the present PhD topic.
The work will consist, through a methodology combining experimental testing and numerical simulation, in improving the representation of fluid flow by explicitly accounting for the impact of heterogeneities. An initial analysis will define an experimental plan, which will then be carried out. The results will be analyzed in order to empirically characterize the influence of each type of heterogeneity tested on transfer properties. A simulation approach, exploiting the experimental findings, will then be developed using finite element and discrete methods. Finally, the applicability of the methodology to a real-scale structure will be assessed, while explicitly accounting for uncertainties regarding the presence and impact of such heterogeneities (probabilistic approach).The PhD will therefore rely on state-of-the-art experimental and numerical tools and methods, and will be conducted in a rich collaborative context (CEA, ASNR, EDF).

University / doctoral school

Sciences Mécaniques et Energétiques, Matériaux et Géosciences (SMEMaG)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2026

Person to be contacted by the applicant

JASON Ludovic ludovic.jason@cea.fr
CEA
DES/DM2S/SEMT
DES/ISAS/DM2S/SEMT
Bat 607 Pièce 124A
91191 Gif-sur-Yvette Cedex


0169085610

Tutor / Responsible thesis director

JASON Ludovic ludovic.jason@cea.fr
CEA
DES/DM2S/SEMT
DES/ISAS/DM2S/SEMT
Bat 607 Pièce 124A
91191 Gif-sur-Yvette Cedex


0169085610

En savoir plus