Pause
Read
CEA vacancy search engine

STUDY OF THE NUCLEAR COLLECTIVE PROPERTIES OF 232TH WITH THE AGATA SPECTROMETER


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-26-0230  

Direction

DRF

Thesis topic details

Category

Corpuscular physics and outer space

Thesis topics

STUDY OF THE NUCLEAR COLLECTIVE PROPERTIES OF 232TH WITH THE AGATA SPECTROMETER

Contract

Thèse

Job description

The study of so-called ‘deformed’ atomic nuclei with a non-spherical charge distribution is essential for testing nuclear interactions and structural models. These deformed nuclei exhibit a very particular pattern of excited states, known as ‘rotational bands’. These bands can be constructed on states with different deformations or different intrinsic structures (shape coexistence). The subject of the thesis is the experimental study of the macroscopic and microscopic properties of the nucleus 232Th. This nuclide exhibits a wide variety of rotational bands that are thought to be due to vibrations of the nuclear surface known as quadrupole and octupole vibrations. In particular the latter have attracted a great deal of interest recently, as octupolar deformed nuclei can be used to determine nuclear electric dipole moments, a fundamental question in physics in general. In our particular case, the aim is to characterise for the first time the quadruplet of octupole bands expected in a strongly deformed nucleus. Furthermore, this nucleus is the only example with a rotational band built on a double quadrupole vibration.

We will study these various shapes using the powerful technique of Coulomb excitation, which is the most direct method for determining the shape of nuclei in their excited states. The experiment will be carried out using AGATA, a new-generation gamma spectrometer consisting of a large number of finely segmented germanium crystals, which can identify each point of interaction of a gamma ray inside the detector and then, using the innovative concept of ‘gamma-ray tracking’, reconstruct the energies of all the gamma rays emitted and their emission angles with unprecedented precision. A complementary experiment will be carried out at HIL Warsaw, which will enable better interpretation of the highly complex data provided by AGATA.

University / doctoral school

PHENIICS (PHENIICS)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2026

Person to be contacted by the applicant

KORTEN Wolfram w.korten@cea.fr
CEA
DRF/IRFU/DPhN/LENA
Drf/IRFU/DPhN
Bat 703 - Orme des Merisiers
91191 Gif/Yvette cedex
+33169084272

Tutor / Responsible thesis director

KORTEN Wolfram w.korten@cea.fr
CEA
DRF/IRFU/DPhN/LENA
Drf/IRFU/DPhN
Bat 703 - Orme des Merisiers
91191 Gif/Yvette cedex
+33169084272

En savoir plus

https://www.researchgate.net/profile/Wolfram_Korten
http://irfu.cea.fr/Sphn/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=483