Pause
Read
CEA vacancy search engine

Design, fabrication, and characterization of GeSn alloy-based laser sources for mid-infrared silicon pho


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-25-0689  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Design, fabrication, and characterization of GeSn alloy-based laser sources for mid-infrared silicon photonics

Contract

Thèse

Job description

You will design and fabricate laser and LED sources based on GeSn alloy in a cleanroom environment. These novel group-IV direct-bandgap materials, epitaxially grown on 200 mm Si wafers, are considered CMOS-compatible and hold great promise for the development of low-cost mid-infrared light sources. You will characterize these light sources using a mid-infrared optical test bench, with the goal of their future integration into a Germanium/Silicon photonic platform. Additionally, you will assess the feasibility of gas detection within a concentration range from a few dozen to several thousand ppm.
The objectives of the PhD are to:
• Design efficient GeSn (Si) stack structures that confine both electrons and holes while providing strong optical gain.
• Evaluate the optical gain under optical pumping and electrical injection at different strain levels and doping concentrations.
• Design and fabricate laser cavities with strong optical confinement.
• Characterize the fabricated devices under optical and electrical injection as a function of their strain state at both room and low temperatures.
• Achieve electrically pumped continuous-wave group-IV lasers.
• Understand the physical phenomena that may impact the material and device performance for light emission.
• Characterize the best-fabricated devices for low-cost environmental gas detection applications.
This work will involve collaborations with international laboratories working on the same dynamic research topic.

University / doctoral school

Ecole Doctorale de Physique de Grenoble (EdPHYS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

REBOUD Vincent vincent.reboud@cea.fr
CEA
DRT/DOPT/SNAP/LCO
17 rue de martyrs
38054 CEA/Grenoble
France
0438784167

Tutor / Responsible thesis director





En savoir plus