Pause
Read
CEA vacancy search engine

Evaluation of nanoscale surface coatings on high energy density positive electrodes for lithium-ion batt


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0816  

Direction

DRF

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Evaluation of nanoscale surface coatings on high energy density positive electrodes for lithium-ion batteries.

Contract

Thèse

Job description

Nickel-rich layered oxides LiNi1-x-yMnxCoyO2 (NMC) and LiNi1-x-yCoyAlzO2 (NCA) are exceptional materials for the positive electrode of lithium batteries due to their high reversible storage capacity. However, under real conditions, undesired reactions can lead to the dissolution of transition metals and electrodes cracking, thus affecting their electrochemical properties. This phenomenon is linked to the presence of hydrofluoric acid (HF) in the electrolyte, mainly due to the degradation of the LiPF6 salt. To address this problem, surface treatments are needed to protect the active material and improve performance. The EVEREST project proposes an innovative, flexible, and affordable method for creating inorganic coatings at the nanoscale. This method is based on a recent technique, coaxial electrospinning, which allows the production of nanofibers with a well-defined core-sheath structure. For this project, we propose to evaluate the impact of nanofiber shaping parameters on morphology, electrochemical performance and the underlying mechanism. The electrochemical performances of the coated and the pristine positive electrodes will be compared in a half-cell with Li metal as a counter electrode. Redox processes, charge transfer mechanisms and structural modifications will be studied in the operando mode using the synchrotron radiation beam.

University / doctoral school

Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/11/2025

Person to be contacted by the applicant

YAGOUBI Saïd said.yagoubi@cea.fr
CEA
DRF/IRAMIS/NIMBE/LEEL
CEA Saclay
DRF/IRAMIS/NIMBE/LEEL
UMR 3685 CEA/CNRS
Bât.637
F-91191 Gif-sur-Yvette Cedex France
+ 33 1 69 08 42 24

Tutor / Responsible thesis director

YAGOUBI Saïd said.yagoubi@cea.fr
CEA
DRF/IRAMIS/NIMBE/LEEL
CEA Saclay
DRF/IRAMIS/NIMBE/LEEL
UMR 3685 CEA/CNRS
Bât.637
F-91191 Gif-sur-Yvette Cedex France
+ 33 1 69 08 42 24

En savoir plus

https://iramis.cea.fr/pisp/said-yagoubi/
https://iramis.cea.fr/en/nimbe/leel/
https://www.ismo.universite-paris-saclay.fr/surfaces-interfaces-molecules-2d-materials-2/