Pause
Read
CEA vacancy search engine

Superconducting RF Filters for Quantum Applications


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-25-0755  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Superconducting RF Filters for Quantum Applications

Contract

Thèse

Job description

Within the Quantum Devices Laboratory, you will work in an environment ranging from fundamental physics to new nano-electronics technologies, with a team that collaborates closely with quantum computing startups and physicists from CEA-IRIG and Institut Néel.
The operating conditions of qubits (cryogenic temperatures <= 1K, GHz frequencies , high signal density) require the development of suitable components and technological bricks. In particular, the passive radiofrequency components developed around the CEA-LETI superconducting interposer technology show extremely interesting electrical properties up to several GHz. These elements, including inductors available over wide value ranges, have already made it possible to establish the first proofs of concept for very compact and low-loss RF filters. The integration of superconducting materials now makes it possible to envisage the creation of new high-performance filters adapted to signal management in cryogenic environments.
You will be required to develop your expertise in the physics of materials and superconducting components. You will study the different superconducting filters that exist in the scientific literature. Using the models developed in the laboratory and the results of the RF measurements in which you will participate, and relying on 3D RF electromagnetic simulation, you will contribute to the design of different RF filters and functions that meet the needs of cryogenic applications.

University / doctoral school

Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/09/2025

Person to be contacted by the applicant

MICHEL Jean-Philippe jean-philippe.michel@cea.fr
CEA
DRT/DCOS//LDQ
17, rue des Martyrs
38054 Grenoble Cedex
0438781110

Tutor / Responsible thesis director

PISTONO Emmanuel emmanuel.pistono@univ-grenoble-alpes.fr
Universités Grenoble Alpes
Laboratoire TIMA
, 46, avenue Félix Viallet - 38031 Grenoble Cedex 1
+33 (0)4 76 57 50 88

En savoir plus