Pause
Read
CEA vacancy search engine

Source clustering impact on Euclid weak lensing high-order statistics


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0341  

Direction

DRF

Thesis topic details

Category

Corpuscular physics and outer space

Thesis topics

Source clustering impact on Euclid weak lensing high-order statistics

Contract

Thèse

Job description

In the coming years, the Euclid mission will provide measurements of the shapes and positions of billions of galaxies with unprecedented precision. As the light from the background galaxies travels through the Universe, it is deflected by the gravity of cosmic structures, distorting the apparent shapes of galaxies. This effect, known as weak lensing, is the most powerful cosmological probe of the next decade, and it can answer some of the biggest questions in cosmology: What are dark matter and dark energy, and how do cosmic structures form?
The standard approach to weak lensing analysis is to fit the two-point statistics of the data, such as the correlation function of the observed galaxy shapes. However, this data compression is sub- optimal and discards large amounts of information. This has led to the development of several approaches based on high-order statistics, such as third moments, wavelet phase harmonics and field-level analyses. These techniques provide more precise constraints on the parameters of the cosmological model (Ajani et al. 2023). However, with their increasing precision, these methods become sensitive to systematic effects that were negligible in the standard two-point statistics analyses.
One of these systematics is source clustering, which refers to the non-uniform distribution of the galaxies observed in weak lensing surveys. Rather than being uniformly distributed, the observed galaxies trace the underlying matter density. This clustering causes a correlation between the lensing signal and the galaxy number density, leading to two effects: (1) it modulates the effective redshift distribution of the galaxies, and (2) it correlates the galaxy shape noise with the lensing signal. Although this effect is negligible for two-point statistics (Krause et al. 2021, Linke et al. 2024), it significantly impacts the results of high-order statistics (Gatti et al. 2023). Therefore, accurate modelling of source clustering is critical to applying these new techniques to Euclid’s weak lensing data.
In this project, we will develop an inference framework to model source clustering and asses its impact on cosmological constraints from high-order statistics. The objectives of the project are:
1. Develop an inference framework that populates dark matter fields with galaxies, accurately modelling the non-uniform distribution of background galaxies in weak lensing surveys.
2. Quantify the source clustering impact on the cosmological parameters from wavelet transforms and field-level analyses.
3. Incorporate source clustering in emulators of the matter distribution to enable accurate data modelling in the high-order statistics analyses.
With these developments, this project will improve the accuracy of cosmological analyses and the realism of the data modelling, making high-order statistics analyses possible for Euclid data.

University / doctoral school

Astronomie et Astrophysique d’Île de France (ED A&A)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

Porqueres Natalia phys2398@ox.ac.uk
CEA
DRF
CEA, DAp, Orme des Merisiers
+33169085764

Tutor / Responsible thesis director

STARCK Jean-Luc jstarck@cea.fr
CEA
DRF/IRFU/DAP/LCS
CEA/Saclay, Orme des Merisiers
01 69 08 57 64

En savoir plus

http://jstarck.cosmostat.org
http://www.cosmostat.org
https://www.physics.ox.ac.uk/our-people/porqueres