Pause
Read
CEA vacancy search engine

Porous materials integrated into devices for glycomic analysis in hospitals.


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-24-0442  

Direction

DRF

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Porous materials integrated into devices for glycomic analysis in hospitals.

Contract

Thèse

Job description

Glycomics involves identifying oligosaccharides (OS) present in a biological fluid as a source of biomarkers for diagnosing various pathologies (cancers, Alzheimer's disease, etc.). To study these OS, sample preparation involves 2 key phases, enzymatic cleavage (breaking the bond between OS and proteins) followed by purification and extraction (separation of OS and proteins). However, the materials currently used in the protocols impose numerous manual and time-consuming steps, incompatible with high-throughput analysis.

In this context, the LEDNA laboratory specialized in materials science has recently developed a sol-gel process for the manufacture of Hierarchical Porosity Monoliths (HPMs) in miniaturized devices. These materials have provided a proof of concept demonstrating their value for the second stage of glycomic analysis, i.e. the purification and extraction of oligosaccharides. The LEDNA is now looking to improve the first step, corresponding to enzymatic cleavage, which has become a limiting factor in the glycomics analysis process. Functionalization of porous materials, in particular HPMs, with enzyme would enable simple sample preparation in just a few hours with a single step.

The aim of this thesis is therefore to show that the use of porous materials with a dual function - catalytic and filtration - applied to the preparation of samples for glycomic analysis is a relevant means of simplifying and accelerating glycomic analysis, as well as employing them in hospital-related studies to identify new biomarkers of pathologies.

The research project will involve developing a device incorporating porous materials with catalytic and filtration functions. Several aspects will be addressed, ranging from the synthesis and shaping of these materials to characterization of their textural and physico-chemical properties. Particular emphasis will be placed on enzyme immobilization. The most promising prototype(s) will be evaluated in a glycomic analysis protocol, verifying the oligosaccharide profiles obtained from human biofluids (plasma, milk). Physico-chemical characterization will involve a variety of techniques (SEM, TEM, etc.), as well as characterization of porosity parameters (nitrogen adsorption, Hg porosimeter). Oligosaccharides will be analyzed by high-resolution mass spectrometry (mainly MALDI-TOF).

For this multidisciplinary thesis project, we are looking for a student chemist or physical chemist, interested in materials chemistry and motivated by the applications of fundamental research in the field of new technologies for health. The thesis will be carried out in two laboratories, LEDNA for the materials part and LI-MS for the use of materials in glycomics analysis. The research activity will be carried out at the Saclay research center (91).

University / doctoral school

Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

MALEVAL Marc marc.maleval@cea.fr
CEA
DRF/IRAMIS/NIMBE/LEDNA
CEA-Saclay
DRF/IRAMIS/NIMBE-UMR3685
LEDNA
Bat. 522 - PC N°6
91 191 Gif sur Yvette Cedex

0169084933

Tutor / Responsible thesis director

Mayne Martine martine.mayne@cea.fr
CEA
DRF/IRAMIS/NIMBE
CEA-Saclay
DRF/IRAMIS/NIMBE-UMR3685
LEDNA
Bat. 522 - PC N°6
91 191 Gif sur Yvette Cedex

01 69 08 48 47

En savoir plus

https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=mmaleval
https://iramis.cea.fr/NIMBE/LEDNA/