Pause
Read
CEA vacancy search engine

LOW THERMAL CONDUCTIVITY MECHANISMS IN RARE-EARTH OXIDES


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-26-0204  

Direction

DRF

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

LOW THERMAL CONDUCTIVITY MECHANISMS IN RARE-EARTH OXIDES

Contract

Thèse

Job description

Understanding the parameters which determine the magnitude of thermal conductivity (k) in solids is of both fundamental and technological interests. k is sensitive to all quasiparticles carrying energy, whether charged or neutral. Foremost among these are phonons, the collective vibrations of atoms in crystals. Measurements of k, however, have also identified more exotic carriers like spinons in the antiferromagnetic Heisenberg chain. In terms of applications, thermal properties of solids are at the heart of major social and environmental issues. The need, for instance, for highly efficient thermoelectric and thermal barrier devices to save energy has driven the quest for low thermal conductors. Over time, a range of strategies has thus been suggested to hinder phonon velocities and/or mean free paths: use of weak interatomic bonds, strong anharmonicity, nanoscale designs, or complex or disordered unit cells. Another promising concept to further impair the phonon mean-free path is based on magneto-elastic coupling.
Still in its infancy, this concept has emerged from the observation of a spin-phonon coupling in a variety of rare-earths based materials. The magnetic excitations involved in the magnetoelastic coupling at play in those compounds are not standard magnons, but low energy crystal field excitations (CEF). Since the latter are local electronic excitations, they do not disperse and thus cannot be associated with propagating quasiparticles. In other words, they are not potential heat carriers hence do not contribute to k, in contrast with dispersive magnetic quasiparticles like magnons. However, they can significantly reduce the phonon lifetime by opening a new scattering mechanism.
The aim of the PhD thesis is therefore to investigate, both experimentally and theoretically, magnetoelastic coupling and its impact on thermal conductivity. The systems to be studied will be (but not restricted to) Tb perovskites, and will include high-entropy or entropy stabilized compositions, displaying glass-like thermal conductivity.

University / doctoral school

Physique en Île-de-France (EDPIF)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2026

Person to be contacted by the applicant

DAMAY-ROWE Françoise francoise.damay@cea.fr
CNRS-UMR 12
LLB - Laboratoire de Diffusion Neutronique
LLB, CEA-CNRS UMR12
91191 Gif sur Yvette
01 69 08 49 54

Tutor / Responsible thesis director

DAMAY-ROWE Françoise francoise.damay@cea.fr
CNRS-UMR 12
LLB - Laboratoire de Diffusion Neutronique
LLB, CEA-CNRS UMR12
91191 Gif sur Yvette
01 69 08 49 54

En savoir plus

https://iramis.cea.fr/llb/nfmq/pisp/francoise-damay/
https://iramis.cea.fr/llb/nfmq/