Pause
Read
CEA vacancy search engine

Measuring quantum decoherence and entanglement in attosecond photoemission


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0743  

Direction

DRF

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Measuring quantum decoherence and entanglement in attosecond photoemission

Contract

Thèse

Job description

The PhD project is centered on the advanced study of attosecond photoemission dynamics. The objective is to access in real time decoherence processes induced, e.g., by electron-ion quantum entanglement. To that aim, the young researcher will develop attosecond spectroscopy techniques making use of a new high repetition rate Ytterbium laser.

Detailed summary :
In recent years, there has been spectacular progress in the generation of attosecond (1 as=10-18 s) pulses, awarded the 2023 Nobel Prize [1]. These ultrashort pulses are generated from the strong nonlinear interaction of short intense laser pulses with gas jets [2]. They have opened new prospects for the exploration of matter at the electron intrinsic timescale. Attosecond spectroscopy allows studying in real time the quantum process of photoemission and shooting the 3D movie of the electron wavepacket ejection [3, 4]. However, these studies were confined to fully coherent dynamics by the lack of experimental and theoretical tools to deal with decoherence and quantum entanglement. Recently, two techniques have been proposed to perform a quantum tomography of the photoelectron in its final asymptotic state [5, 6].

The objective of the PhD project is to develop attosecond spectroscopy to access the full time evolution of decoherence and entanglement during the photoemission process. Quantum tomographic techniques will be implemented on the ATTOLab laser platform (https://iramis.cea.fr/en/lidyl/atto/attolab-platform/) using a new Ytterbium laser source. This novel laser technology is emerging, with stability 5 times higher and repetition rate 10 times higher than the current Titanium:Sapphire technology. These new capabilities represent a breakthrough for the field and allow, e.g., charged particle coincidence techniques, to study the dynamics of photoemission and quantum entanglement with unprecedented precision.

This PhD project is performed in the frame of a recently funded European Network QU-ATTO (https://quatto.eu/), providing an advanced training to 15 young researchers, and opening many opportunities of joint work with European laboratories. In particular, strong collaborations are already ongoing with the groups of Prof. Anne L’Huillier in Lund, and Prof. Giuseppe Sansone in Freiburg. Due to the Mobility Rule, candidates must not have resided (work, studies) in France for more than 12 months since August 2022.
The student will receive solid training in ultrafast optics, atomic and molecular physics, attosecond science, quantum optics, and will acquire a broad mastery of XUV and charged-particle spectroscopy techniques.

References :
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
[5] C. Bourassin-Bouchet, et al., Phys. Rev. X 10, 031048 (2020)
[6] H. Laurell, et al., Nature Photonics, https://doi.org/10.1038/s41566-024-01607-8 (2025)

University / doctoral school

Ondes et Matière (EDOM)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/09/2025

Person to be contacted by the applicant

MARROUX Hugo hugo.marroux@cea.fr
CEA
DRF/IRAMIS/LIDyL/ATTO
LIDYL, Bât. 701,
Université Paris-Saclay, CEA, CNRS,
CEA-Saclay,
91191 Gif sur Yvette
0169081744

Tutor / Responsible thesis director

SALIERES Pascal pascal.salieres@cea.fr
CEA
DRF/IRAMIS/LIDyL/ATTO
LIDYL,
Université Paris-Saclay, CEA,
CEA-Saclay,
91191 Gif sur Yvette
0169086339

En savoir plus

https://iramis.cea.fr/en/lidyl/pisp/pascal-salieres-2/
https://iramis.cea.fr/lidyl/atto/
https://iramis.cea.fr/en/lidyl/atto/attolab-platform/