Pause
Read
CEA vacancy search engine

Lambda hyperon polarization measurement in exclusive deeply virtual meson production processes


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-24-0386  

Direction

DRF

Thesis topic details

Category

Corpuscular physics and outer space

Thesis topics

Lambda hyperon polarization measurement in exclusive deeply virtual meson production processes

Contract

Thèse

Job description

This thesis focuses on measuring the polarization of Lambda hyperons in exclusive deeply virtual meson production processes. The study is rooted in a surprising discovery from the 1970s: in proton-Beryllium collisions, ? hyperons exhibited transverse polarization, challenging the predictions of perturbative Quantum Chromodynamics. Similar polarizations have since been observed in various collision systems.
The proposed research topic leverages deeply virtual exclusive reactions in electron-proton scattering, providing precise control over final states and initial particle polarizations. Specifically, the reaction e+p->e+Lambda+K+ is explored to shed light on the Lambda hyperon's polarization. This process is also sensitive to the poorly known transversity Generalized Parton Distributions (GPDs) of the nucleon, offering valuable insights into nucleon properties.
The thesis aims to analyze data collected with the CLAS12 experiment at the Jefferson Laboratory (JLab) in US, with a focus on e-p collisions with a longitudinally polarized NH3 target. Machine learning algorithms and simulations will be employed to enhance data reconstruction and event candidate selection. The candidate will also contribute to simulation studies for future detectors and their reconstruction algorithms for the EIC.
The research will be conducted within the Laboratory of Nucleon Structure at CEA/Irfu. A background in particle physics, computer science (C++, Python), and knowledge of particle detectors is beneficial for active participation in data analysis.
The student will have the opportunity to collaborate with local and international researchers, to participate in the CLAS collaboration, to join the EIC user group with frequent trips to the USA for data collection and workshops, and present research findings at international conferences.

University / doctoral school

PHENIICS (PHENIICS)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

BOSSU Francesco francesco.bossu@cea.fr
CEA
DRF/IRFU/SPhN
IRFU/Departement de Physique Nucléaire
CEA, Centre de Saclay
F-91191 Gif-sur-Yvette

Tutor / Responsible thesis director

BOSSU Francesco francesco.bossu@cea.fr
CEA
DRF/IRFU/SPhN
IRFU/Departement de Physique Nucléaire
CEA, Centre de Saclay
F-91191 Gif-sur-Yvette

En savoir plus