Pause
Read
CEA vacancy search engine

Magnetic fusion turbulence: where do reduced models fail, how to enrich them?


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0575  

Direction

DRF

Thesis topic details

Category

Corpuscular physics and outer space

Thesis topics

Magnetic fusion turbulence: where do reduced models fail, how to enrich them?

Contract

Thèse

Job description

One of the key challenges facing the field of fusion plasma modeling is the nonlinear nature of the plasma response. This means that factors such as temperature and density gradients, flows, and velocity gradients all have an impact on the transport of heat, particles, and momentum in complex ways. Modeling such a system requires a range of approaches, from the highly detailed flux-driven gyrokinetics method to simpler quasilinear models within an integrated framework. These have proven effective in interpreting experimental data and predicting plasma behaviour. However, there are two significant challenges to this approach. Firstly, modeling the peripheral region of the plasma edge, at the transition between open and closed field lines, is challenging due to the confluence of significantly different underlying physics. Recent research indicates that current quasilinear transport models may have significant shortcomings in this region. Secondly, modeling the 'near marginality' regime is challenging due to the fact that it involves a state of dynamic equilibrium where the system's behaviour is self-regulated by slow, large-scale modes. Computing this state is challenging and requires a flux-driven gyrokinetic approach to move away from the typical assumption of time scale separation between turbulence and transport. Recent work from within our team indicates that current quasilinear transport models may also be facing significant shortcomings in this regime. It is crucial to understand this regime in depth as it is relevant for future machine operation. We are now in a position to address these two issues, as we have access to cutting-edge in-house tools relevant to both ends of the spectrum.
We plan to compare transport predictions in the edge and near marginality regimes from the advanced flux-driven gyrokinetic code GYSELA with those from the integrated framework using the reduced quasilinear QuaLiKiz model. The research will contribute to the development of robust reduced models for transport, crucial for the interpretation of current experimental data and for future burning plasma operation.

University / doctoral school

Physique et Sciences de la Matière (ED352)
Aix-Marseille Université

Thesis topic location

Site

Cadarache

Requester

Position start date

01/11/2025

Person to be contacted by the applicant

DIF-PRADALIER Guilhem guilhem.dif-pradalier@cea.fr
CEA
DRF/IRFM//SPPF/GTSN
IRFM, Bâtiment 513,
CEA Cadarache,

13108 St Paul lez Durance
0442254774

Tutor / Responsible thesis director

Camenen Yann
CNRS
Aix-Marseille Univ. / PIIM Lab.

En savoir plus


https://irfm-i.intra.cea.fr/intranet/
https://gyselax.github.io/