General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DES-25-0231
Thesis topic details
Category
Engineering science
Thesis topics
Chemo-mechanical modeling of the coupling between carbonation, rebar corrosion and cracking in cementitious materials
Contract
Thèse
Job description
Rebar corrosion is one of the main causes of premature degradation of concrete infrastructures, including in the nuclear sector, where concrete is extensively used in containment structures and waste storage facilities. Carbonation, caused by the penetration of CO2 into the concrete, lowers the pH of the pore solution, promoting rebar corrosion. This corrosion leads to the formation of expansive products that can cause cracking in the material. The proposed thesis work, developed as part of a European collaborative project between CEA Saclay, École des Mines de Paris - PSL, and IRSN, aims to develop a numerical model to simulate these phenomena. The model combines a reactive transport code (Hytec) and a finite element code (Cast3M) to study the local effects of carbonation-induced corrosion on concrete cracking. This project will benefit from parallel experimental work to gather data for parameter identification and model validation. The first part of the research will focus on modeling the carbonation of cementitious materials under unsaturated conditions, while the second part will address the corrosion of rebar caused by the pH drop induced by carbonation. The model will describe the growth of corrosion products and their expansion, inducing stress within the concrete and potential microcracking.
This research project is aimed at a PhD student wishing to develop their skills in materials science, with a strong focus on multi-physical and multi-scale modeling and numerical simulations. The thesis will be carried out principally at CEA Saclay and at École des Mines de Paris – PSL (Fontainebleau).
University / doctoral school
Sciences Mécaniques et Energétiques, Matériaux et Géosciences (SMEMaG)
Paris-Saclay
Thesis topic location
Site
Saclay
Requester
Position start date
01/10/2025
Person to be contacted by the applicant
BARY Benoît
benoit.bary@cea.fr
CEA
DES/DRMP//LECBA
CEA/Saclay
DES/ISAS/DRMP/S2CM/LECBA
Bâtiment 158, PC 25
91191 Gif/Yvette Cedex
0169082383
Tutor / Responsible thesis director
BARY Benoît
benoit.bary@cea.fr
CEA
DES/DRMP//LECBA
CEA/Saclay
DES/ISAS/DRMP/S2CM/LECBA
Bâtiment 158, PC 25
91191 Gif/Yvette Cedex
0169082383
En savoir plus