General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DES-25-0108
Thesis topic details
Category
Engineering science
Thesis topics
Simplified modelling of calcination in a rotating tube
Contract
Thèse
Job description
As part of the reprocessing of uranium oxide spent fuel, the final high-level liquid waste is packaged in glass using a two-stage process, calcination followed by vitrification. Calcination gradually transforms the liquid waste into a dry residue, which is mixed with preformed glass in a melting furnace. The calciner consists of a rotating tube heated by a resistance furnace. The calcined solutions consist of nitric acid and compounds in their nitrate form or insolubles in the form of metal alloys. In order to improve control of the calciner, it is proposed to model it.
The modelling will consist of creating and then coupling three models:
- A thermodynamic model to represent the transformations undergone by the material. This part will almost certainly involve ATD and ATG measurements, coupled with a design of experiments type approach (1st year).
- A material flow model. The literature already contains very simplified principles for representing the flow in a rotating tube calciner, but we will have to be innovative, in particular by defining tests to characterise the flow of the material during the calcination process (2nd year).
A thermal model that will take into account exchanges between the furnace and the calciner tube as well as exchanges between the material and the tube. The exchange coefficients will have to be characterised (1st year).
Combining these three models (3rd year) will give rise to an initial simplified calcination model. This model will be used to help control the calcination stage and also to train operators to control this apparatus.
You will be working in the LDPV, a multidisciplinary team (process, chemistry, fluid mechanics, modelling, mechanics, induction) comprising 16 engineers and technicians. A team with 30 years' experience in vitrification processes, recognised both nationally and internationally.
University / doctoral school
Sciences Chimiques Balard (EDSCB)
Thesis topic location
Site
Marcoule
Requester
Position start date
01/11/2024
Person to be contacted by the applicant
LEDOUX Alain
alain.ledoux@cea.fr
CEA
DES/DPME//LDPV
04 66 79 66 33
Tutor / Responsible thesis director
En savoir plus
https://isec.cea.fr/