Pause
Read
CEA vacancy search engine

Catalysis using sustainaBle hOllow nanoreacTors wiTh radiaL pErmanent polarization


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-24-0284  

Direction

DRF

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Catalysis using sustainaBle hOllow nanoreacTors wiTh radiaL pErmanent polarization

Contract

Thèse

Job description

The combined demands of increasing energy production and the need to reduce fossil fuels to limit global warming have paved the way for an urgent need for clean energy harvesting technologies. One interesting solution is to use solar energy to produce fuels. Thus, low-cost materials such as semiconductors have been intensively studied for photocatalytic reactions. Among them, 1D nanostructures hold promise due to their interesting properties (high specific and accessible surfaces, confined environments, better charge separation). Imogolite, a natural hollow nanotube clay belongs to this category. Although it is not directly photoactive in the visible light range (high band gap), it exhibits a permanent wall polarization due to its intrinsic curvature. This property makes it a potentially useful co-photocatalyst for charge separation. Moreover, this nanotube belongs to a family sharing the same local structure with different curved morphologies (nanosphere and nanotile). In addition, several modifications of these materials are possible (wall doping with metals, coupling with metal nanoparticles, functionalization of the internal cavity) allowing tuning band gap. The proof of concept (i.e., photocatalytic nanoreactor) was only obtained for the nanotube form.

This phD project aims to study the whole family (nanotube, nanosphere, and nanotile, with various functionalizations) as nanoreactors for reduction reactions of protons and CO2 triggered under irradiation.

University / doctoral school

Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

PICOT Pierre pierre.picot@cea.fr
CEA
DRF/IRAMIS/NIMBE/LIONS/
CEA Paris-Saclay
DRF/IRAMIS/NIMBE/LIONS
Bât.546 p.2
91191 Gif sur Yvette

Tutor / Responsible thesis director

LE CAER Sophie sophie.le-caer@cea.fr
CNRS
DRF/IRAMIS/NIMBE/LIONS
DRF/IRAMIS/NIMBE/LIONS
Bât.546
CEA Saclay
91191 GIf/Yvette
01 69 08 15 58

En savoir plus

https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=ppicot
https://iramis.cea.fr/NIMBE/LIONS/