Pause
Read
CEA vacancy search engine

Optimization of gamma radiation detectors for medical imaging. Time-of-flight positron emission tomogra


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0253  

Direction

DRF

Thesis topic details

Category

Corpuscular physics and outer space

Thesis topics

Optimization of gamma radiation detectors for medical imaging. Time-of-flight positron emission tomography

Contract

Thèse

Job description

Positron emission tomography (PET) is a nuclear medical imaging technique widely used in oncology and neurobiology.
We're proposing you to contribute to the development of an ambitious, patented technology: ClearMind. This gamma photon detector uses a monolithic PbWO4 crystal, in which Cherenkov and scintillation photons are produced. These optical photons are converted into electrons by a photoelectric layer and multiplied in a MicroChannel plate. The induced electrical signals are amplified by gigahertz amplifiers and digitized by SAMPIC fast acquisition modules. The opposite side of the crystal will be fitted with a matrix of silicon photomultiplier (SiPM).

You will work in an advanced instrumentation laboratory in a particle physics environment .
The first step will be to optimize the 'components' of ClearMind detectors, in order to achieve nominal performance. We'll be working on scintillating crystals, optical interfaces, photoelectric layers and associated fast photodetectors, and readout electronics.
We will then characterize the performance of the prototype detectors on our measurement benches.
The data acquired will be interpreted using in-house analysis software written in C++ and/or Python.
Finally, we will compare the physical behavior of our detectors to Monté-Carlo simulation software (Geant4/Gate).
A particular effort will be devoted to the development of ultra-fast scintillating crystals in the context of a European collaboration.

University / doctoral school

Physique et Ingénierie: électrons, photons et sciences du vivant (EOBE)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

YVON Dominique dominique.yvon@cea.fr
CEA
DRF/IRFU
CEA Saclay
IRFU/DPhP, Bat 141, PC21
Bat 141, p52
91191 Gif sur Yvette Cedex
&
BioMaps, SHFJ, 4 place du général Leclerc, 91401 Orsay France
01 6908 3625

Tutor / Responsible thesis director

SHARYY Viatcheslav Viatcheslav.Sharyy@cea.fr
CEA
DRF/IRFU
CEA Saclay
DSM, IRFU, DPhP
Bat. 141
91191 Gif-sur-Yvette
0169086129

En savoir plus

https://irfu.cea.fr/Pisp/dominique.yvon/
https://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_technique.php?id_ast=3937&voir=3939