General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DES-26-0550
Thesis topic details
Category
Engineering science
Thesis topics
Control & optimization of fuel cell temperature
Contract
Thèse
Job description
Proton exchange membrane fuel cells (PEMFC) represent a key technology for the development of clean and sustainable energy systems, particularly for heavy-duty transport applications where their energy density is very attractive. However, in order to represent a viable industrial alternative, a number of obstacles still need to be overcome, including operating costs and, above all, the durability of the systems under real-world conditions. Among the levers for action, optimizing operating conditions is a promising avenue for limiting the degradation phenomena occurring within the cell. The operating temperature is a particularly key parameter because it affects all aspects of the system, from the kinetics of degradation mechanisms to the thermal capacity that the system can dissipate, including the water balance within the fuel cell. Despite the influence of this parameter on durability, it is generally only optimized at the system level to achieve the best performance, the shortest possible response time and to limit the size of the thermal management system.
The aim of this thesis is to work on optimizing the temperature management of a fuel cell within a system, taking into account not only performance but also sustainability criteria. To do this, the impact of operating temperature on degradation mechanisms will be analyzed using various simulation tools already available at LITEN and the teams' fifteen years of experience in studying PEMFC fuel cell degradation. Various thermal architectures will be proposed and evaluated in conjunction with the work on temperature control optimization. The latter will be implemented on a real fuel cell system in order to demonstrate the relevance of the proposed solution using concrete experimental data.
University / doctoral school
Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes
Thesis topic location
Site
Grenoble
Requester
Position start date
01/09/2026
Person to be contacted by the applicant
PIFFARD Maxime
maxime.piffard@cea.fr
CEA
DES/DEHT//LSY
17 Rue des Martyrs
38 054 Grenoble Cedex 9
04.38.78.15.38
Tutor / Responsible thesis director
ROSINI Sébastien
Sebastien.rosini@cea.fr
CEA
DES/DEHT//LSTA
17 Rue des Martyrs
38 054 Grenoble Cedex 9
04.38.78.17.21
En savoir plus