General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRF-26-0205
Direction
DRF
Thesis topic details
Category
Condensed Matter Physics, chemistry, nanosciences
Thesis topics
OCTOCHLORE MAGNETS
Contract
Thèse
Job description
In recent years, progress in the field of frustrated magnets have led to the emergence of innovative concepts including new phases of matter. The latter’s do not show any long-range order (no symmetry breaking), but, in classical systems, exhibit a highly degenerate ground state made of classical configurations. An emblematic example is spin ice in pyrochlores : in this case, the construction of those configurations relies on a simple rule, which states that the sum of the four spins in any tetrahedron of the magnetic lattice must be zero. This so-called “ice rule” can be understood as the conservation rule of an emergent gauge field. Experimental evidence of this physics was provided by the observation of singular points in the spin-spin correlation function by elastic neutron scattering experiments. Such singular points, called pinch points, arise because the correlations of the emergent divergence free field are dipolar in nature, with
algebraic spin-spin correlations.
The origin of this physics lies in the conjunction between lattice connectivity, anisotropy and magnetic interactions, which collude to select configurations where a local constraint between spins is preserved. Recently, several authors have proposed a generalization of this concept to other geometries and other constraints, as for instance the “octochlore” lattice, formed by corner sharing octahedra.
Depending on the chosen constraint, different spin liquids have been theoretically predicted.
An experimental realization of the octochlore lattice can be found in rare earth fluorides KRE3F10, as their crystal structure forms a “breathing” network of small and large RE octahedra. Very little is known about the physics of KRE3F10 compounds, apart from magnetization measurements performed two decades ago. The goal of the PhD work will be to characterize the ground state of two Kramers members of the KRE3F10 system (RE = Dy3+, Er3+), to identify in particular any signature of the spin liquid physics suggested by recent theoretical works, and better understand the constraints leading to it.
University / doctoral school
Physique en Île-de-France (EDPIF)
Paris-Saclay
Thesis topic location
Site
Saclay
Requester
Position start date
01/10/2026
Person to be contacted by the applicant
DAMAY-ROWE Françoise
francoise.damay@cea.fr
CNRS-UMR 12
LLB - Laboratoire de Diffusion Neutronique
LLB, CEA-CNRS UMR12
91191 Gif sur Yvette
01 69 08 49 54
Tutor / Responsible thesis director
DAMAY-ROWE Françoise
francoise.damay@cea.fr
CNRS-UMR 12
LLB - Laboratoire de Diffusion Neutronique
LLB, CEA-CNRS UMR12
91191 Gif sur Yvette
01 69 08 49 54
En savoir plus
https://iramis.cea.fr/llb/nfmq/pisp/francoise-damay/
https://iramis.cea.fr/llb/nfmq/