Pause
Read
CEA vacancy search engine

Flying Qubit in Graphene


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0751  

Direction

DRF

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Flying Qubit in Graphene

Contract

Thèse

Job description

The solid-state systems, presently considered for quantum computation, are built from localized two-level systems, prime examples are superconducting qubits or semiconducting
quantum dots. Due to the fact that they are localized, they require a fixed amount of hardware per qubit.

Propagating or “flying” qubits have distinct advantages with respect to localised ones: the hardware footprint depends only on the gates and the qubits themselves (photons) can be created on demand making these systems easily scalable. A qubit that would combine the advantages of localised two-level systems and flying qubits would provide a paradigm shift in quantum technology. In the long term, the availability of these objects would unlock the possibility to build a universal quantum computer that combines a small, fixed hardware footprint and an arbitrarily large number of qubits with long-range interactions. A promising approach in this direction is to use electrons rather than
photons to realise such flying qubits. The advantage of electronic excitations is the Coulomb interaction, which allows the implementation of a two-qubit gate.

The aim of the present Phd will be the development of the first quantum-nanoelectronic platform for the creation, manipulation and detection of flying electrons on time scales down to the picosecond and to exploit them for quantum technologies.

University / doctoral school


Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

Roulleau Preden preden.roulleau@cea.fr
CEA
DRF/IRAMIS/SPEC/GNE
SPEC/IRAMIS/DSM
CEA/Saclay
91191 Gif sur Yvette Cédex
0169087311

Tutor / Responsible thesis director

Roulleau Preden preden.roulleau@cea.fr
CEA
DRF/IRAMIS/SPEC/GNE
SPEC/IRAMIS/DSM
CEA/Saclay
91191 Gif sur Yvette Cédex
0169087311

En savoir plus

https://iramis.cea.fr/en/spec/gne/pisp/preden-roulleau-english/

https://iramis.cea.fr/spec/gne/