General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DES-26-0402
Thesis topic details
Category
Engineering science
Thesis topics
Ductile fracture of irradiated materials under cyclic loadings : Experimental characterization, modelling and numerical simulation
Contract
Thèse
Job description
Metal alloys used in industrial applications most often have a ductile fracture mode involving nucleation, growth, and coalescence of internal cavities. The cavities appear as a result of the rupture of inclusions and grow under mechanical loading until they join together, leading to the failure of the structure. Resistance to crack initiation and propagation results from this mechanism. The prediction of toughness therefore requires the modeling of the plasticity of porous materials. The behavior of porous materials has been extensively studied from an experimental, theoretical, and numerical point of view in the case of monotonic mechanical loading under large deformations, leading to constitutive equations that can be used to simulate ductile fracture of structures. The case of cyclic mechanical loading and / or involving low levels of deformation / low number of cycles has been comparatively little studied, even though this type of loading is of interest in industrial applications, for example in the case of earthquakes. In this thesis, the effect of oligocyclic loading on ductile fracture properties will be investigated systematically from an experimental, theoretical, and
numerical point of view. Test campaigns will be carried out on various materials used in nuclear applications and under different mechanical stress conditions in order to quantify the effect of oligocyclic loading on fracture deformation and toughness. At the same time, numerical simulations will be performed to obtain an extensive database on the plastic behavior of porous materials under cyclic loading, with a particular focus on the effects of elasticity, porosity, mechanical loading, and spatial distribution of cavities. These numerical simulations will be used to validate analytical models developed during the thesis to predict the evolution of porosity and yield stress. Finally, the models will be implemented in the form of constitutive equations and used to simulate experimental tests.
University / doctoral school
Sciences Mécaniques et Energétiques, Matériaux et Géosciences (SMEMaG)
Paris-Saclay
Thesis topic location
Site
Saclay
Requester
Position start date
01/10/2026
Person to be contacted by the applicant
HURE Jérémy
jeremy.hure@cea.fr
CEA
DES/DRMP//LCMI
DRMP/SEMI/LCMI
CEA Saclay
Bat 639
0169081868
Tutor / Responsible thesis director
TANGUY BENOIT
benoit.tanguy@cea.fr
CEA
DES/DRMP/SEMI/LCMI
DES/ISAS/DRMP/SEMI/LCMI
CEA Saclay
91191 Gif sur Yvette
0169089420
En savoir plus