Pause
Read
CEA vacancy search engine

Innovative modeling for multiphysics simulations with uncertainty estimates applied to sodium-cooled fas


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-24-0178  

Thesis topic details

Category

Corpuscular physics and outer space

Thesis topics

Innovative modeling for multiphysics simulations with uncertainty estimates applied to sodium-cooled fast reactors

Contract

Thèse

Job description

Multiphysics modeling is a powerful tool for analyzing nuclear reactors, but the uncertainty propagation between disciplines is often disregarded. This PhD thesis proposes innovative approaches to improve the accuracy of multiphysics modeling by accounting for these uncertainties. The primary goal is to propose optimal modeling approaches tailored to diverse accuracy requirements. This information is of prime interest to researchers and industry professionals involved in the development and utilization of multiphysics models. Specifically, the thesis will assess various uncertainty propagation techniques applicable to multiphysics simulations. This involves exploring surrogate modeling through avenues like reduced-order modeling and polynomial chaos expansion. The goal is to identify and categorize input parameters with the most significant impact on system outputs, irrespective of their physical domain. Subsequently, uncertainty propagation will be executed using two core modeling types: a ‘high-fidelity’ model based on the CEA's reference simulation tools and a ‘best-estimate’ model accounting for the 'industrial' objective of the calculations). The similarities and differences between these approaches will be analyzed to assess model biases. These uncertainty evaluations employing the above methods will be tested on an extensive set of experiments performed in SEFOR, a sodium-cooled fast reactor, representing a diverse range of experimental data for various reactor conditions.

University / doctoral school

Physique et Sciences de la Matière (ED352)
Aix-Marseille Université

Thesis topic location

Site

Cadarache

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

GARCIA CERVANTES Elias Elias-Yammir.GARCIA-CERVANTES@cea.fr
CEA
DES/DER/SPRC/LEPH
DER/SPRC/LEPh
bat 230
CEA Cadarache
13108 Saint-Paul-lez-Durance
33(0)442257140

Tutor / Responsible thesis director

BUIRON Laurent laurent.buiron@cea.fr
CEA
DES/DER
DEN/DER/SPRC/LEPH
CEA Cadarache
13108 Saint Paul lez Durance
04 42 25 21 66

En savoir plus