Pause
Read
CEA vacancy search engine

Multi-target capture strategy for micro total analysis systems


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-24-0505  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Multi-target capture strategy for micro total analysis systems

Contract

Thèse

Job description

The concentration of biomarkers and pathogens in biological samples is generally limited by the preparation of these samples after their collection. In addition, their detection, when based on an antibody-antigen capture reaction, can be difficult to optimize within biosensors. If the approach which consists of functionalizing a wall to capture molecules or particles flowing in a micro channel seems simple at first glance, the results are often below expectations. On the one hand, the capture of molecules is a convection-diffusion problem; on the other hand, capturing particles must also take into account the pressure distributions on them. Thus the proposed thesis subject is part of a project to optimize the capture and concentration of all types of biological and biochemical targets within fluidic microsystems.

The thesis project will begin by the exploration of models dedicated to the capture of biochemical and biological targets within a microchannel. The objective of this task is to specify the optimal and common conditions for capturing all targets of interest. Among all possible configurations, maintaining functionalized beads dispersed in volume by an adequate field will be favored because it is expected to be optimal. This configuration will be a subject of particular attention, especially as it offers an original microfluidic implementation, particularly in the study of organoids on chips to capture, concentrate and monitor their secretions.

For this project, the laboratory is looking for a student motivated by experimental work in microfluidics with a detailed understanding of the involved physical phenomena. In addition, knowledge of classic molecular biology tests will be appreciated. Skills in numerical simulation are also an asset when applying for the proposed thesis.

University / doctoral school

Ingénierie - Matériaux - Environnement - Energétique - Procédés - Production (IMEP2)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

ROUX Jean-Maxime jean-maxime.roux@cea.fr
CEA
DRT/DTIS//LMTS
CEA-Leti
DRT/DTIS/SYSM/LMTS
17, rue des Martyrs
38054 GRENOBLE Cedex 9
FRANCE
04 38 78 01 03

Tutor / Responsible thesis director

DAVOUST Laurent laurent.davoust@hmg.inpg.fr
UGA
Grenoble INP - UMR 5266 - Science et ingénierie des matériaux et des procédés (SIMAP)
SIMAP
Science et Ingénierie des MAtériaux et Procédés
1130 rue de la Piscine - BP 75 - F-38402 ST MARTIN D HERES CEDEX

0476825206

En savoir plus

https://www.researchgate.net/profile/Jean-Maxime-Roux