Pause
Read
CEA vacancy search engine

ADVANCED ARTIFICIAL INTELLIGENCE TECHNIQUES FOR PARTICLE RECONSTRUCTION IN THE CMS DETECTOR USING PRECIS


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-24-0448  

Direction

DRF

Thesis topic details

Category

Corpuscular physics and outer space

Thesis topics

ADVANCED ARTIFICIAL INTELLIGENCE TECHNIQUES FOR PARTICLE RECONSTRUCTION IN THE CMS DETECTOR USING PRECISION TIMING AND ATTENTION MECHANISM

Contract

Thèse

Job description

Particle reconstruction in collider detectors is a multidimensional problem where machine learning algorithms offer the potential for significant improvements over traditional techniques. In the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC), photons and electrons produced by the collisions at the interaction point are recorded by the CMS Electromagnetic Calorimeter (ECAL). The large number of collisions, coupled with the detector's complex geometry, make the reconstruction of clusters in the calorimeter a formidable challenge. Traditional algorithms struggle to distinguish between overlapping clusters created by proximate particles. In contrast, It has been shown that graph neural networks offer significant advantages, providing better differentiation between overlapping clusters without being negatively affected by the sparse topology of the events. However, it is crucial to understand which extracted features contribute to this superior performance and what kind of physics information they contain. This understanding is particularly important for testing the robustness of the algorithms under different operating conditions and for preventing any biases the network may introduce due to the difference between data and simulated samples (used to train the network).
In this project, we propose to use Gradient-weighted Class Activation Mapping (Grad-CAM) and its attention mechanism aware derivatives to interpret the algorithm's decisions. By evaluating the extracted features, we aim to derive analytical relationships that can be used to modify existing lightweight traditional algorithms.
Furthermore, with the upcoming High Luminosity upgrade of the LHC, events involving overlapping clusters are expected to become even more frequent, thereby increasing the need for advanced deep learning techniques. Additionally, precision timing information of the order of 30 ps will be made available to aid in particle reconstruction. In this PhD project, we also aim to explore deep learning techniques that utilize Graph and Attention mechanisms (Graph Attention Networks) to resolve spatially proximate clusters using timing information. We will integrate position and energy deposition data from the ECAL with precision timing measurements from both the ECAL and the new MIP Timing Detector (MTD). Ultimately, the developed techniques will be tested in the analysis of a Higgs boson decaying into two beyond-the-standard-model scalar particles.

We are seeking an enthusiastic PhD candidate who holds an MSc degree in particle physics and is eager to explore cutting-edge artificial intelligence techniques. The selected candidate will also work on the upgrade of the CMS detector for the high-luminosity LHC.

University / doctoral school

PHENIICS (PHENIICS)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

SAHIN Mehmet Ozgur ozgur.sahin@cea.fr
CEA
DRF/IRFU/DEDIP/STREAM

01 69 08 14 67

Tutor / Responsible thesis director

COUDERC Fabrice fabrice.couderc@cea.fr
CEA
DRF/IRFU/DPHP
CEA-Saclay Irfu/SPP
01 69 08 86 83

En savoir plus


https://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast_technique.php?id_ast=2292