General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRT-26-0533
Direction
DRT
Thesis topic details
Category
Technological challenges
Thesis topics
Reducing damage and loading in high aspect ratio III-V etching
Contract
Thèse
Job description
The growing demand for III-V semiconductors in high-efficiency photovoltaics, quantum photonics, and advanced imaging technologies requires innovative and cost-effective fabrication methods. This PhD project focuses on developing plasma etching processes for In-based III-V semiconductors to produce high aspect ratio (HAR) structures on large wafers from 100 to 300 mm. The research addresses two key challenges: understanding how etching process windows evolve with material loading and process conditions (physical vs. chemical dominance), and minimizing electrical degradation induced by HAR etching, which is critical for device performance.
These challenges are fundamentally linked to the low volatility of In-based etch byproducts, the need to balance kinetic and thermal energy inputs to enhance etch selectivity, and the management of etch loading effects for large-scale production. The experimental approach will leverage CEA-Leti's state-of-the-art facilities, including the Photonics platform for 2–4-inch wafer processing, which enables masking strategies (hard mask deposition, photolithography) and low-temperature (<100°C) etching. Additionally, the Si platform features a next-generation 12-inch reactor with plasma pulsing capabilities for high-temperature (>150°C) etching.
Characterization will involve SEM for etch profile analysis, XPS for surface composition, and TEM-EDX for sidewall quality assessment. Damage evaluation will be performed using near-infrared photoluminescence decay to measure minority carrier lifetime and identify recombination centers. The work aims to develop optimized HAR etching processes (aspect ratios >10, critical dimensions <1 µm) for In-based III-V materials, investigate pulsed plasma techniques to reduce etch-induced damage, and provide insights into defect formation mechanisms to guide process optimization for industrial applications.
University / doctoral school
Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes
Thesis topic location
Site
Grenoble
Requester
Position start date
01/10/2026
Person to be contacted by the applicant
BARBET sophie
sophie.barbet@cea.fr
CEA
DRT/DPFT/SMTP/LITP
17 rue des Martyrs
0438782147
Tutor / Responsible thesis director
BOULARD François
francois.boulard@cea.fr
CEA
DRT/DPFT/SPAT
17 rue des Martyrs 38054 Grenoble
0438782270
En savoir plus