Pause
Read
CEA vacancy search engine

“Remote epitaxy' of Cd(Hg)Te


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-24-0566  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

“Remote epitaxy' of Cd(Hg)Te

Contract

Thèse

Job description

A new way of considering epitaxy has recently appeared thanks to the development of 2D materials. Whereas conventional epitaxy involving covalent bonds is limited in particular to a lattice parameter matching between the substrate and the epitaxial membrane, it appears that this constraint can be significantly released if the epitaxial growth is done by van der Waals interactions. 2D materials are ideal candidates for this type of growth since their surface does not have hanging bonds.
'Remote epitaxy' is a recent innovative and original approach that consists in cutting the classical covalent epitaxial growth by inserting a sheet of 2D material to allow the transmission of the “crystalline field” between the substrate and the epitaxial layer. The stress in the first epitaxial layers is then significantly reduced with the possibility of easily exfoliate and release (thanks to the low energy interface) the epitaxial membrane from its substrate.
This approach has been successfully used in the case of III-V materials with the intercalation of a graphene sheet. We propose in this thesis to study the “remote epitaxy” of II-VI semiconductors, CdTe and HgCdTe that are at the heart of many applications areas such as infrared detection and imaging, X-ray detection and medical applications or photovoltaic.
Several 2D materials will be studied, either reported or directly grown on the surface of the substrate. Graphene will be transferred by dry-method to generate clean interfaces. Preferably, 2D material will be directly grown on the substrate surface. This study will be done in collaboration with the 2D SPINTEC team.

University / doctoral school

Ecole Doctorale de Physique de Grenoble (EdPHYS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

BALLET Philippe philippe.ballet@cea.fr
CEA
DRT/DPFT/SMTP/LMP
CEA/Grenoble
17, rue des Martyrs
38054 Grenoble cedex 9
0438782930

Tutor / Responsible thesis director

OKUNO Hanako hanako.okuno@cea.fr
CEA
DRF/IRIG//MEM
17 rue des Martyrs
38054 Grenoble cedex 9
04 38 78 20 73

En savoir plus