General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRT-25-0593
Direction
DRT
Thesis topic details
Category
Technological challenges
Thesis topics
Attention-based Binarized Visual Encoder for LLM-driven Visual Question Answering
Contract
Thèse
Job description
In the context of smart image sensors, there is an increasing demand to go beyond simple inferences such as classification or object detection, to add more complex applications enabling a semantic understanding of the scene. Among these applications, Visual Question Answering (VQA) enables AI systems to answer questions by analyzing images. This project aims to develop an efficient VQA system combining a visual encoder based on Binary Neural Networks (BNN) with a compact language model (tiny LLM). Although LLMs are still far from a complete hardware implementation, this project represents a significant step in this direction by using a BNN to analyze the context and relationship between objects of the scene. This encoder processes images with low resource consumption, allowing real-time deployment on edge devices. Attention mechanisms can be taken into consideration to extract the semantic information necessary for scene understanding. The language model used can be stored locally and adjusted jointly with the BNN to generate precise and contextually relevant answers.
This project offers an opportunity for candidates interested in Tiny Deep Learning and LLMs. It proposes a broad field of research for significant contributions and interesting results for concrete applications. The work will consist of developing a robust BNN topology for semantic scene analysis under certain hardware constraints (memory and computation) and integrating and jointly optimizing the BNN encoder with the LLM, while ensuring a coherent and performant VQA system across different types of inquiries.
University / doctoral school
Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes
Thesis topic location
Site
Grenoble
Requester
Position start date
01/10/2025
Person to be contacted by the applicant
NGUYEN Thien
vanthien.nguyen@cea.fr
CEA
DRT/DOPT//L3I
CEA leti/DOPT
Minatec Campus
17, rue des Martyrs
38054 Grenoble Cedex
0438780980
Tutor / Responsible thesis director
GUICQUERO William
william.guicquero@cea.fr
CEA
DRT/DOPT//L3I
CEA leti/DOPT
Minatec Campus
17, rue des Martyrs
38054 Grenoble Cedex
04 38 78 09 57
En savoir plus