General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRF-25-0081
Direction
DRF
Thesis topic details
Category
Technological challenges
Thesis topics
Caliste-3D CZT: development of a miniature, monolithic and hybrid gamma-ray imaging spectrometer with improved efficiency in the 100 keV to 1 MeV range and optimised for detection of the Compton effect and sub-pixel localisation
Contract
Thèse
Job description
Multi-wavelength observation of astrophysical sources is the key to a global understanding of the physical processes involved. Due to instrumental constraints, the spectral band from 0.1 to 1 MeV is the one that suffers most from insufficient detection sensitivity in existing observatories. This band allows us to observe the deepest and most distant active galactic nuclei, to better understand the formation and evolution of galaxies on cosmological scales. It reveals the processes of nucleosynthesis of the heavy elements in our Universe and the origin of the cosmic rays that are omnipresent in the Universe. The intrinsic difficulty of detection in this spectral range lies in the absorption of these very energetic photons after multiple interactions in the material. This requires good detection efficiency, but also good localisation of all the interactions in order to deduce the direction and energy of the incident photon. These detection challenges are the same for other applications with a strong societal and environmental impact, such as the dismantling of nuclear facilities, air quality monitoring and radiotherapy dosimetry.
The aim of this instrumentation thesis is to develop a versatile '3D' detector that can be used in the fields of astrophysics and nuclear physics, with improved detection efficiency in the 100 keV to 1 MeV range and Compton events, as well as the possibility of locating interactions in the detector at better than pixel size.
Several groups around the world, including our own, have developed hard X-ray imaging spectrometers based on high-density pixelated semiconductors for astrophysics (CZT for NuSTAR, CdTe for Solar Orbiter and Hitomi), for synchrotron (Hexitec UK, RAL) or for industrial applications (Timepix, ADVACAM). However, their energy range remains limited to around 200 keV (except for Timepix) due to the thinness of the crystals and their intrinsic operating limitations. To extend the energy range beyond MeV, thicker crystals with good charge carrier transport properties are needed. This is currently possible with CZT, but several challenges need to be overcome.
The first challenge was the ability of manufacturers to produce thick homogeneous CZT crystals. Advances in this field over the last 20 years mean that we can now foresee detectors up to at least 10 mm thick (Redlen, Kromek).
The main remaining technical challenge is the precise estimation of the charge generated by the interaction of a photon in the semiconductor. In a pixelated detector where only the X and Y coordinates of the interaction are recorded, increasing the thickness of the crystal degrades spectral performance. Obtaining Z interaction depth information in a monolithic crystal theoretically makes it possible overcome the associated challenge. This requires the deployment of experimental methods, physical simulations, the design of readout microelectronics circuits and original data analysis methods. In addition, the ability to localise interactions in the detector to better than the size of a pixel will help to solve this challenge.
University / doctoral school
Astronomie et Astrophysique d’Île de France (ED A&A)
Paris-Saclay
Thesis topic location
Site
Saclay
Requester
Position start date
01/09/2025
Person to be contacted by the applicant
Le Breton Rémy
remy.le-breton@cea.fr
CEA
DRF/IRFU
Tutor / Responsible thesis director
Meuris Aline
aline.meuris@cea.fr
CEA
DRF/IRFU/DAP/LSAS
Orme des Merisiers - bâtiment 709
CEA Saclay
01 69 08 12 73
En savoir plus